Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Quang
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2020 lúc 15:00

Bunhiacopxki:

\(\left(a+b+1\right)\left(a+b+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\frac{1}{a+b+1}\le\frac{a+b+c^2}{\left(a+b+c\right)^2}\)

Tương tự: \(\frac{1}{b+c+1}\le\frac{b+c+a^2}{\left(a+b+c\right)^2}\) ; \(\frac{1}{c+a+1}\le\frac{c+a+b^2}{\left(a+b+c\right)^2}\)

Cộng vế với vế và so sánh giả thiết

\(\Rightarrow\frac{a^2+b^2+c^2+2\left(a+b+c\right)}{\left(a+b+c\right)^2}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2\left(a+b+c\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a+b+c\ge ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Tag bị lỗi lâu rồi, ko nhận được thông báo khi tag đâu :(

Phạm Minh Quang
19 tháng 6 2020 lúc 13:14
tống thị quỳnh
Xem chi tiết
Nguyễn Thiều Công Thành
25 tháng 9 2017 lúc 20:50

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

Lê Văn Hoàng
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Truc Ninh Tran
Xem chi tiết
nguyễn thi nga
Xem chi tiết
Thắng Nguyễn
24 tháng 4 2017 lúc 18:53

Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)

Ta có: 

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM

Hoàng Thị Thúy
Xem chi tiết
Duy Phúc
2 tháng 12 2017 lúc 12:52

\(\sqrt[4]{b^3}\)

Tran Le Khanh Linh
3 tháng 5 2020 lúc 9:59

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Khách vãng lai đã xóa
Lê Song Phương
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2022 lúc 16:05

Cách 1:

Do vai trò của a;b;c là như nhau, không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow3=ab+bc+ca\le3ab\Rightarrow ab\ge1\)

Ta có:

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\)

\(\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{1+ab}\)

\(\Rightarrow VT\ge\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\ge\dfrac{3}{2}\Leftrightarrow c^2+3-ab\ge3abc^2\)

\(\Leftrightarrow c^2+ac+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\)

Đúng do \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{9}{ab+bc+ca}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Việt Lâm
10 tháng 4 2022 lúc 16:12

Cách 2:

\(\Leftrightarrow1-\dfrac{a^2}{a^2+1}+1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{3a^2}{3a^2+3}+\dfrac{3b^2}{3b^2+3}+\dfrac{3c^2}{3c^2+3}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{3a^2}{2a^2+a^2+ab+bc+ca}+\dfrac{3b^2}{2b^2+b^2+ab+bc+ca}+\dfrac{3c^2}{2c^2+c^2+ab+bc+ca}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}+\dfrac{b^2}{b\left(a+b+c\right)+2b^2+ac}+\dfrac{c^2}{c\left(a+b+c\right)+2c^2+ab}\le\dfrac{1}{2}\)

Ta có:

\(\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}\le\dfrac{1}{4}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{4}\left(1+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

Nên ta chỉ cần chứng minh:

\(\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)

\(\Leftrightarrow\dfrac{\left(bc\right)^2}{2a^2bc+\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{2ab^2c+\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{2abc^2+\left(ab\right)^2}\ge1\)

Đúng do:

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)

Lê Song Phương
10 tháng 4 2022 lúc 15:51

Bài này chọn điểm rơi khộng có tác dụng đâu.

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)

Khi đó \(\frac{1}{a^2+1}=\frac{1}{2}\)

Ta cần ghép \(\frac{1}{a^2+1}\)với hạng tử \(k\left(a^2+1\right)\)sao cho khi Cô-si đảm bảo dấu "=" xảy ra khi \(a=1\)

Mà \(a^2+1=2\)

Lại có khi Cô-si 2 số dương trên, dấu "=" xảy ra khi \(\frac{1}{a^2+1}=k\left(a^2+1\right)\)hay \(\frac{1}{2}=k.2\)hay \(k=\frac{1}{4}\)

Đặt \(S=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{1}{a^2+1}\)và \(\frac{a^2+1}{4}\), ta có \(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)

Tượng tự, ta có \(\frac{1}{b^2+1}+\frac{b^2+1}{4}\ge1\)và \(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge1\)

\(\Rightarrow S+\frac{a^2+b^2+c^2+3}{4}\ge3\)\(\Leftrightarrow S\ge3-\frac{a^2+b^2+c^2+3}{4}\)

BĐT duy nhất liên hệ giữa \(a^2+b^2+c^2\)và \(ab+bc+ca\)là \(a^2+b^2+c^2\ge ab+bc+ca\), từ đó \(a^2+b^2+c^2\ge3\)nhưng nếu vậy thì \(S\ge3-\frac{a^2+b^2+c^2+3}{4}\le3-\frac{3+3}{4}=\frac{3}{2}\)(xảy ra trường hợp ngược dấu). Như vậy ta không thể dùng cách chọn điểm rơi.

Còn cách Cô-si ngược dấu cũng chẳng làm ăn được gì:

\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Tương tự, ta có \(\frac{1}{b^2+1}\ge1-\frac{b}{2}\)và \(\frac{1}{c^2+1}\ge1-\frac{c}{2}\)

\(\Rightarrow S\ge3-\frac{a+b+c}{2}\)

Khổ nỗi BĐT duy nhất liên hệ giữa \(a+b+c\)và \(ab+bc+ca\)là \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)mà khi dùng BĐT này thì lại xuất hiện trường hợp ngược dấu \(S\ge3-\frac{a+b+c}{2}\le3-\frac{3}{2}=\frac{3}{2}\)

Dùng cả 2 cách không được nên mình nháp mãi rồi cũng chịu thua. Mình đăng lên đây mong các bạn giúp đỡ. Cảm ơn trước nhé.

Khách vãng lai đã xóa