Chứng tỏ rằng n . ( n+3) luôn chia hết cho 2 và n E N
Chứng tỏ rằng với mọi n E N ta luôn có :
a) n . ( n + 1 ) . ( n + 5 ) chia hết cho 3
b) n . ( 2n + 1 ) . ( 7n + 1 ) chia hết cho 6
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
Chứng tỏ rằng với mọi số nguyên n thì :
A = ( n + 6 ) ( n + 7 ) luôn luôn chia hết cho 2 ;
B = n^2 + n + 3 không chia hết cho 2.
a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp
=> (n+6)(n+7) chia hết cho 2
b) n^2 + n + 3 = n(n+1) +3
Vì n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2
mà 3 ko chia hết cho 2
=> n(n+1) +3 ko chia hết cho 2
=>n^2 + n ko chia hết cho 2
Cho hai tập hợp:
\(E = \{ n \in N|n\) chia hết cho 3 và 4}, và \(G = \{ n \in N|n\) chia hết cho 12}.
Chứng tỏ rằng E = G.
Ta có:
n chia hết cho 3 và 4 \( \Leftrightarrow \)n chia hết cho 12 (do (3,4) =1)
Do đó: nếu n là phần tử của tập hợp A thì n cũng là phần tử của tập hợp B và ngược lại.
Hay mọi phần tử của tập hợp A đều là phần tử của tập hợp B và ngược lại.
Vậy \(E \subset G\) và \(G \subset E\) hay E = G.
Chứng tỏ rằng mọi stn n ta luôn có (n+3).(n+6) chia hết cho 2
TL :
Nếu n = 2k ( k thuộc N ) thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 ( k thuộc N ) thì n + 3 = 2k + 1 + 3 = 2k + 4 chia hết cho 2
Vậy ( n + 3 ) . ( n + 6 ) chia hết cho 2
Chúc bn hok tốt ~
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
a)Các số tự nhiên chia hết cho 9 là :450;405;540;504
b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534
chứng tỏ rằng mọi số tự nhiên n thì tích (n+3)(n+6) luôn chia hết cho 2
Chứng tỏ rằng mọi số tự nhiên n thì tích n.(n+5) luôn luôn chia hết cho 2.
Vì n là số tự nhiên
=>n có 2 dạng là 2k và 2k+1
*Xét n=2k=>n.(n+5)=2k.(2k+5) chia hết cho 2
=>n.(n+5) chia hết cho 2
*Xét n=2k+1=>n.(n+5)=(2k+1).(2k+1+5)=(2k+1).(2k+6)=(2k+1).(k+3).2 chia hết cho 2
=>n.(n+5) chia hết cho 2
Vậy mọi số tự nhiên n thì n.(n+5) chia hết cho 2