Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhuân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2023 lúc 23:28

m: \(=\left(\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{2\left(x+1\right)}\right)\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)

\(=\dfrac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2\cdot x}{\left(x-1\right)\left(x+1\right)^2}-\dfrac{3}{x-1}=\dfrac{x}{x-1}-\dfrac{3}{x-1}=\dfrac{x-3}{x-1}\)

p: \(=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{-x^2\left(x-2\right)}{x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)

Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 22:23

a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)

\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)

\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)

 

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 22:31

c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)

\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)

 

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 11 2023 lúc 22:44

a:

ĐKXĐ: x<>-1

 \(\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\)

\(=\dfrac{x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\)

\(=\dfrac{x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x}{\left(x+1\right)\left(x^2-x+1\right)}\)

b: \(\dfrac{x}{x^2-2x}-\dfrac{x^2+4x}{x^3-4x}-\dfrac{2}{x^2+2x}\)

\(=\dfrac{x}{x\left(x-2\right)}-\dfrac{x\left(x+4\right)}{x\left(x^2-4\right)}-\dfrac{2}{x\left(x+2\right)}\)

\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)

\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\dfrac{1}{x}+\dfrac{1}{x+2}\)

\(=\left(\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}+\dfrac{1}{x+2}\right)-\dfrac{1}{x}\)

\(=\dfrac{x+2-x-4+x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x}\)

\(=\dfrac{x-4}{x^2-4}-\dfrac{1}{x}\)

\(=\dfrac{x^2-4x-x^2+4}{x\left(x^2-4\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

c: \(\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\)

\(=\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-1-3x+3+4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x^2-1}\)

d:

\(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

 

Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 22:04

a. \(y'=\dfrac{-1}{\left(x-1\right)}\)

b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)

c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)

e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)

g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)

Nguyễn Việt Lâm
30 tháng 4 2021 lúc 22:15

2.

a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)

b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)

c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)

d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)

e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)

f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)

Linh nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 19:42

a: \(M=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{x-1-x+3}{x-1}\)

\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{2}\)

\(=\dfrac{-2x+2}{2\left(x+1\right)}\cdot\dfrac{1}{2}=\dfrac{-x+1}{2}\)

b: Thay x=-1/2 vào M, ta được:

\(M=\dfrac{\dfrac{1}{2}+1}{2}=\dfrac{3}{2}:2=\dfrac{3}{4}\)

Nguyễn Huy Tú
4 tháng 3 2022 lúc 19:49

a, \(M=\left(\dfrac{x^2-1-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x-1-x+3}{x-1}\right)\)

\(=\left(\dfrac{-1+x-3x-3}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{2}{x-1}=\dfrac{-2x-4}{2\left(x-1\right)\left(x+1\right)}:\dfrac{2}{x-1}=\dfrac{-\left(x+2\right)}{2\left(x+1\right)}\)

b, Thay x  =-1/2 vào ta đc 

\(-\dfrac{\left(\dfrac{-1}{2}+2\right)}{2\left(-\dfrac{1}{2}+1\right)}=\dfrac{-\dfrac{3}{2}}{2\left(\dfrac{1}{2}\right)}=\dfrac{-3}{2}\)

Nguyễn Huy Tú đã xóa
Nguyễn Huy Tú
4 tháng 3 2022 lúc 19:50

a, \(M=\left(\dfrac{x^2-1-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x-1-x+3}{x-1}\right)\)

\(=\dfrac{-2x+2}{2\left(x-1\right)\left(x+1\right)}:\dfrac{2}{x-1}=\dfrac{-2\left(x-1\right)^2}{4\left(x-1\right)\left(x+1\right)}=\dfrac{-\left(x-1\right)}{2\left(x+1\right)}\)

b, Thay x = -1/2 vào ta đc 

\(M=\dfrac{\dfrac{1}{2}+1}{2\left(\dfrac{-1}{2}+1\right)}=\dfrac{\dfrac{3}{2}}{\dfrac{2.1}{2}}=\dfrac{3}{2}\)

 

 

Hoàng Huy
Xem chi tiết
Huỳnh Thị Thanh Ngân
29 tháng 7 2021 lúc 9:23

\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)

\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)

\(ĐKXĐ:x\ne1\)

\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)

\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)

\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)

\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)

\(\Rightarrow-4x^2-8x\)

⇒-4x(x-4)

Hoàng Huy
Xem chi tiết
👁💧👄💧👁
29 tháng 7 2021 lúc 8:50

\(\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\\ =\dfrac{11x+x-18}{2x-3}\\ =\dfrac{12x-18}{2x-3}\\ =\dfrac{6\left(2x-3\right)}{2x-3}\\ =6\)

\(\dfrac{2x+12}{4x^2-9}+\dfrac{2x+5}{4x-6}\left(ĐKXĐ:x\ne\dfrac{3}{2};x\ne\dfrac{-3}{2}\right)\\ =\dfrac{2x+12}{\left(2x-3\right)\left(2x+3\right)}+\dfrac{2x+5}{2\left(2x-3\right)}\\ =\dfrac{4x+24}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{\left(2x+5\right)\left(2x+3\right)}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x+24+4x^2+6x+10x+15}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x^2+20x+39}{2\left(2x-3\right)\left(2x+3\right)}\)

\(\dfrac{x}{2x+1}+\dfrac{-1}{4x^2-1}+\dfrac{2-x}{2x-1}\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne\dfrac{-1}{2}\right)\\ =\dfrac{x\left(2x-1\right)-1+\left(2-x\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{2x^2-x-1+4x+2-2x^2-x}{\left(2x-1\right)\left(2x+1\right)}\\ =\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{1}{2x-1}\)

Vũ Thảo Anh
Xem chi tiết
Anh PVP
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2024 lúc 18:59

\(\dfrac{x^2-4x+4}{x^2+2x+1}.\dfrac{x+1}{x^2-2x}.\dfrac{6x}{2x+4}=\dfrac{\left(x-2\right)^2}{\left(x+1\right)^2}.\dfrac{x+1}{x\left(x-2\right)}.\dfrac{6x}{2\left(x+2\right)}\)

\(=\dfrac{3\left(x-2\right)}{\left(x+1\right)\left(x+2\right)}\)