Cho tam giác ABC, đường cao BM và CN cắt nhau tại H. CMR : \(MN=BC.cos\widehat{A}\)
Cho tam giác \(ABC\) nhọn có hai đường cao \(BM,CN\) cắt nhau tại \(H\).
a) Chứng minh rằng \(\Delta AMN\backsim\Delta ABC\).
b) Phân giác của \(\widehat {BAC}\) cắt \(MN\) và \(BC\) lần lượt tại \(I\) và \(K\). Chứng minh rằng \(\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\).
a) Vì \(BM\)là đường cao nên \(\widehat {AMB} = 90^\circ \); vì \(CN\)là đường cao nên \(\widehat {ANC} = 90^\circ \)
Xét tam giác \(AMB\) và tam giác \(ANC\) có:
\(\widehat A\) (chung)
\(\widehat {ANB} = \widehat {ANC} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta AMB\backsim\Delta ANC\) (g.g).
Suy ra, \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).
Do đó, \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) (tỉ lệ thức)
Xét tam giác \(AMN\) và tam giác \(ABC\) có:
\(\widehat A\) (chung)
\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) (chứng minh trên)
Suy ra, \(\Delta AMN\backsim\Delta ABC\) (c.g.c).
b) Xét tam giác \(AMN\) có \(AI\) là đường phân giác của \(\widehat {MAN}\left( {I \in MN} \right)\).
Theo tính chất đường phân giác ta có:
\(\frac{{IM}}{{IN}} = \frac{{AM}}{{AN}}\)
Xét tam giác \(ABC\) có \(AK\) là đường phân giác của \(\widehat {BAC}\left( {K \in BC} \right)\).
Theo tính chất đường phân giác ta có:
\(\frac{{BK}}{{KC}} = \frac{{AB}}{{AC}}\)
Mà \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (chứng minh trên) nên \(\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\) (điều phải chứng minh).
Cho tam giác ABC nhọn, có hai đường cao BM và CN cắt nhau tại H.
a) CMR: AM. AC = AN. AB
b) Chứng minh hai tam giác AMN và ABC đồng dạng
c) Gọi P là giao điểm của AH với BC. CMR: PH là phân giác của góc MPN
d) Đường thẳng MN cắt BC tại D. CMR: DN. PM = DM. PN
a: Xet ΔAMB vuông tại M và ΔANC vuông tại N có
góc MAB chung
=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC
=>AM*AC=AN*AB; AM/AB=AN/AC
b: Xet ΔAMN và ΔABC co
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
c: góc MPH=góc ACN
góc NPH=góc ABM
góc ACN=góc ABM
=>góc MPH=góc NPH
=>PH là phân giác củagóc MPN
cho tam giác abc cân tại A, Các đường trung tuyến BM và CN
a)CMR: tam giác BMC=CNB
b)CMR: MN//BC
c)BM cắt CN tại G. CMR: AG vuông góc MN
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
Cho tam giác nhọn ABC có các đường cao BM và CN cắt nhau tại H. Cho AH cắt BC tại K. Gọi I và O là tđ của AH và BC
Chứng minh \(\widehat{NIM}+\widehat{NOM=}180\)
Cho tam giác nhọn ABC .Hai đường cao BM cà CN của tam giác ABC cắt nhau tại H,biết BM=CN
a, Chứng minh tam giác ABC cân tại A
b,Chứng minh MN vuông góc với AH
Cho tam giác ABC cân tại A,kẻ hai đường cao BM và CN cắt nhau tại H.Chứng minh rằng:
1)Tam giác ABM=tam giác ACN
2)Tam giác BMC=Tam giác CNB
3)AMN là tam giác gì
4) MN song song với BC
`@` `\text {Ans}`
`\downarrow`
`1)`
Vì `\Delta ABC` cân tại A.
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$
Xét `\Delta ABM` và `\Delta ACN`:
`\text {AB = AC}`
$\widehat {A} \text { chung}$
$\widehat {ANC} = \widehat {AMB} (=90^0)$
`=> \Delta ABM = \Delta ACN (ch-gn)`
`2)`
Xét `2 \Delta` vuông `BMC` và `CNB`:
$\widehat {B} = \widehat {C}$
`\text {BC chung}`
`=> \Delta BMC = \Delta CNB (ch-gn)`
`3)`
Vì `\Delta BMC = \Delta CNB (b)`
`-> \text {BN = CM (2 cạnh tương ứng)}`
Ta có: \(\left\{{}\begin{matrix}\text{AB = AN + NB}\\\text{AC = AM + MC}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BN = CM}\end{matrix}\right.\)
`-> \text {AM = AN}`
Xét `\Delta AMN`:
`\text {AM = AN}`
`-> \Delta AMN` cân tại A.
`4)`
Kẻ đường cao AI
Vì AI đi qua MN
`-> \text {AI} \bot \text {MN}`
Ta có: \(\left\{{}\begin{matrix}\text{AI }\bot\text{ MN}\\\text{AI }\bot\text{ BC}\end{matrix}\right.\)
`@` Theo tiên đề euclid
`-> \text {MN // BC}`
Hoặc bạn có thể giải cách này
Vì `\Delta AMN` cân tại A
\(\rightarrow\widehat{\text{AMN}}=\widehat{\text{ANM}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(1)`
Vì `\Delta ABC` cân tại A
\(\rightarrow\widehat{\text{ABC}}=\widehat{\text{ACB}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(2)`
Từ `(1)` và `(2)`
`->` \(\widehat{\text{ABC}}=\widehat{\text{ANM}}\)
Mà `2` góc này ở vị trí sole trong
`-> \text {MN // BC (t/c 2 đt' //).}`
1: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
góc BAM chung
=>ΔABM=ΔACN
2: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
góc NBC=góc MCB
=>ΔNBC=ΔMCB
3: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
4: AM/AC=AN/AB
=>MN//BC
cho tam giác ABC có 3 góc nhọn, đường cao BM và CN cắt nhau tại H
a) cmr: tam giác HMB đồng dạng với tam giác HMC
b) cmr: AB.AN=AC.AM và góc AMN= góc ABC
c) gọi E là trung điểm của MN, K là trung điểm của BC
CMR EK ⊥ MN
d) chứng minh BN.BA+CM.CA=\(BC^2\)
Cho tam giác ABC có các đường cao AD,BE,CF cắt nhau tại H,kẻ BM,CN vuông góc với EF.Chứng minh DF+DE=MN
cho tam giác ABC nhọn đường cao BM,CN cắt nhau tại H.AH cắt BC tại I. CMR: IA là tia phân giác của góc MIN
B1:Cho tam giác ABC vuông tại A (AB<AC), đường phân giác BM. Trên tia đối của MB lấy D sao cho MB=MD. Qua D kể đường thẳng vuông góc với AC tại N và cắt BC tại E. Cmr: MN<MC
B2:Cho tam giác ABC cân tại A, AB=5cm, BC=6cm. Trung tuyến BM và CN cắt nhau tại G. E là điểm nằm giữa A và G. Cmr: AB-AM>EB-EM