Cho a+5b=9
Tìm GTNN của P=26b^2-a^2-2a+1
Cho 2 biểu thức: A = \(\dfrac{x+7}{3\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{9-x}\)với x>0, x≠9
Tìm GTNN của biểu thức P = A.B
cho a,b>0 thỏa mãn 3a+2b<=9
tìm giá trị lớn nhất A=2a+b+ab
Tìm tất cả các giá trị của a để nghiệm của phương trình sau đạt GTNN,GTLN:
\(2x^4+2x^2+2ax+a^2+2a+1=0\)
cho các số abc thỏa mãn : 2a=3b ; 5b = 4c và a+b+c = 30 . cm rằng giá trị của A = a+b2-c2+37 là một số nguyên tố
Cho a;b;c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}\)= \(\frac{b-c+a}{2a-b}\)=\(\frac{2}{3}\)
Khi đó giá trị của biểu thức P=\(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Leftrightarrow6a-2a=2b+3b\)
\(\Leftrightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow4a-3a=3b-3c+2b\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a=4a-3c\)
\(\Leftrightarrow3a=3c\)
\(\Rightarrow a=c\)
\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)
cho \(x\ge1;y\ge1;z\ge1\) thỏa mãn xy+yz+zx = 9
tìm GTNN và GTLN của P = \(x^2+y^2+z^2\)
cảm ơn trc
Tìm GTNN của biểu thức A=\(a^4-2a^3+3a^2-4a+5\)
\(A=a^4-2a^3+3a^2-4a+5\)
\(=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu = xảy ra khi a = 1
Cho a,b là các số nguyên dương thoả mãn ab=1. Tìm GTNN của biểu thức:
\(F=\left(2a+2b-a\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
bà kiếm mấy bài cực trị này ở đâu z? chỉ t vs ,cho t đề cx đc
cho a,b,c thực thỏa mãn a2+b2+c2=1.Tìm min Thắng=ab+bc+2ac
đấy phúc coi thử
cho x>0,y>0 và x+y=2a
tìm GTNN của A = 1/x+1/y
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có \(A=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)
Min A = 2/a tại x = y = a