chứng minh 2n+1 và 5n+2 là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) 3n+7 và 5n+12 là 2 số nguyên tố cùng nhau
b) 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
Chứng minh rằng:với mọi n thuộc N thì hai số:
a) 3n + 4 và 2n + 3 là hai số nguyên tố cùng nhau
b) 5n +1 và 6n + 1 là hai số nguyên tố cùng nhau
giải giúp tôi với
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
chứng minh rằng 2n+1 và 5n+2 là 2 số nguyên tố cùng nhau . giup minh nhe
tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại
Gọi ƯCLN(2n+1,5n+2)là (2n+1,5n+2)
Ta có : (2n+1,5n+2)=(2n+1,3n+1)
=(2n+1,1n)
=(n,n+1)
mà ƯCLN(n,n+1) =1 với mọi n
---> ƯCLN(2n+1,5n+2)=1
---> 2n+1 nà 5n+2 là 2 số nguyên tố cùng nhau ..
Vậy ...
gọi d là ước chung lớn nhất của 2n+1 và 5n+2
=> d là ước số của 5.(2n+1) = 10n +5
và d là ước số của 2(5n+2)= 10n +4
mà (10n + 5) - (10n +4) =1
=> d là ước số của 1 => d = 1
vậy 2n+1 và 5n+2 nguyên tố cùng nhau.
chứng minh 5n+3 và 2n+7 là 2 số nguyên tố cùng nhau
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
hãy chứng minh : 2n+3 và 5n-2 là 2 số nguyên tố cùng nhau
Đặt \(ƯCLN\left(2n+3,5n-2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(2n+3\right)⋮d\\2\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}10n+15⋮d\\10n-4⋮d\end{cases}}\)
\(\Rightarrow\left(10n+15\right)-\left(10n-4\right)⋮d\)\(\Rightarrow19⋮d\)
Vì \(d\inℕ^∗\)\(\Rightarrow d\in\left\{1;19\right\}\)??
Mà \(d\)lớn nhất nên \(d=19\)
Nếu như \(ƯCLN\left(2n+3,5n-2\right)=19\)thì \(2n+3\)và \(5n-2\)đâu nguyên tố cùng nhau??
Cho \(n=8\)thì \(2n+3=2.8+3=19\)và \(5n-2=5.8-2=38\)
19 và 38 không nguyên tố cùng nhau nên em xem lại đề bài nhé.
Chứng minh 5n + 4 và 2n + 5 là số nguyên tố cùng nhau
Đặt \(d=ƯCLN\left(5n+4;2n+5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(5n+4\right)⋮d\\5\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left[5\left(2n+5\right)-2\left(5n+4\right)\right]⋮d\)
\(\Rightarrow\left(10n+25-10n-8\right)⋮d\)
\(\Rightarrow17⋮d\)
\(\Rightarrow d=17\) hoặc \(d=1\)
Mà \(2n+5\) là số lẻ nên \(d\ne17\)
Vậy \(d=1\) hay mọi số tự nhiên n thì các số \(5n+4;2n+5\) là số nguyên tố cùng nhau.
Chứng minh rằng với n N thì hai số sau nguyên tố cùng nhau:
a) 5n + 2 và 2n + 1 b) 7n + 10 và 5n + 7 c) 2n + 1 và 2n + 3 c) 3n + 1 và 5n + 2
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)
\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)
d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)
Chứng minh 5n+7 và 2n+3 là 2 số nguyên tố cùng nhau
Gọi d là UCLN(5n + 7, 2n + 3)
Khi đó ta có \(\hept{\begin{cases}5n+7⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}10n+14⋮d\\10n+15⋮d\end{cases}}\)
\(\Rightarrow\left(10n+15\right)-\left(10n+14\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy nên 5n + 7 và 2n + 3 là hai số nguyên tố cùng nhau.
5n+7bằng2.(5n+7)bằng10n+14
2n+3bằng5.(2n+3)bằng10n+15
gọi ƯCLN 2số là d .2Số nguyên tố cùng nhau có ƯCLN là1
(10n+15)-(10n+14)chia hết cho d
1chia hết cho d
vậy d là 1
2 số là2 số nguyên tố cùng nhau