phan tich da thuc thanh nhan tu
x^4+x^3+2x^2+x+1
phan tich da thuc thanh nhan tu
x(x-4)+5x-20
\(=x\left(x-4\right)+5\left(x-4\right)=\left(x+5\right)\left(x-4\right)\)
phan tich da thuc thanh nhan tu:x^4+x^3+2x^2+x+1
\(x^4+x^3+2x^2+x+1=x^4+x^2+x^3+x+x^2+1\)
\(=x^2\left(x^2+1\right)+x\left(x^2+1\right)+1\left(x^2+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
cái cuối là \(\left(x^2+1\right)\left(x^2+x+1\right)\)
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
phan tich da thuc thanh nhan tu
x^4+x^3+2x^2+x+1
X^4+4x^3+5x^2+2x+1
Phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu chung
x^6-2x^3 +1
x^4 +2x^2+1
\(x^6-2x^3+1=\left(x^3-1\right)^2\)
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
a) x6 - 2x3 + 1
= (x3)2 - 2x3 + 1
= ( x3 - 1)2
b) x4 + 2x2 + 1
= ( x2)2 + 2x2 + 1
= ( x2 + 1)2
Đặt A= x^4+2x^3+4x^2+2x+1
=> A/x^2 = x^2+2x+4+2/x+1/x^2 = (x^2+1/x^2)+2(x+1/x)+4
đặt y= x+1/x => A/x^2= y^2-2+2y+4 = y^2 +2y+2= (y+1)^2 +1 >0
=>PT y^2+2y+2=0 vô nghiệm => A không thể phân tích thành nhân tử
bạn xem lại đề xem có phải sai đề ko? Hoặc cũng có thể mình nhầm hic.. hic *^*
phan tich da thuc thanh nhan tu
A=x^6-2x^5-4x^4+6x^3+4x^2-2x-1
Phan tich da thuc thanh nhan tu (1+2x)(1-2x)-x(x+2)(x-2)
\(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)\))
\(=1-\left(2x\right)^2-x.x^2-2^2\)
\(=1-4x^2-x^3-4\)
Ko bt có đúng ko nữa
( 1 + 2x ) ( 1 - 2x ) - x ( x + 2 ) ( x - 2 )
= 1 - 4x2 - x ( x2 - 4 )
= 1 - 4x2 - x3 + 4x
= - ( x3 + 4x2 - 4x - 1 )
= - ( x3 - x2 + 5x2 - 5x + x - 1 )
= - [ x2 ( x - 1 ) + 5x ( x - 1 ) + ( x - 1 ) ]
= - ( x - 1 ) ( x2 + 5x + 1 )
phan tich da thuc thanh nhan tu
x^3+x+2
x^3-2x-1
1)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
2)\(=\left(x+1\right)\left(x^2-x-1\right)\)
x3 + x + 2 = x3 + x + 1 + 1
= (x + 1)(x2 + x + 1) + (x+1)
=(x+1)(x2 +2x + 2)
x3 - 2x -1