Bài tập :
a) Cho a + b + c \(\ne0\) và a3 + b3 + c3 = 3abc . Tính N = \(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)
b) Tìm số tự nhiên n để n2 + 4n + 2013 là 1 số chính phương
Cho a3+b3+c3=3abc với a,b,c khác 0 và a+b+c khác 0
tính A=\(\dfrac{\left(2016+\dfrac{a}{b}\right)+\left(2016+\dfrac{b}{c}\right)+\left(2016+\dfrac{c}{a}\right)}{2017^3}\)
giúp mình với
Có:
\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)
Thay \(a=b=c\) vào \(A\), ta được:
\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)
\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)
\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)
\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)
\(=\dfrac{3}{2017^2}\)
Vậy: ...
Bài 1:a,Cho a+b+c≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)
b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương
a, \(a^3+b^3+c^3=3abc\)
⇔\(a^3+b^3+c^3-3abc=0\)
⇔\(\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2=0\)
⇔\(\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)
⇔\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-3ab\right)=0\)
⇔\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
⇒\(a^2+b^2+c^2-ab-bc-ac=0\left(a+b+c\ne0\right)\)
⇔\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
⇔\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
⇔\(a=b=c\)
⇒\(=\frac{a^{2016}+a^{2016}+a^{2016}}{\left(a+a+a\right)^{2016}}=\frac{3a^{2016}}{3^{2016}\cdot a^{2016}}=\frac{1}{3^{2015}}\)
b/ \(n^2+4n+2013=k^2\) (\(k\in N\))
\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)
\(\Leftrightarrow k^2-\left(n+2\right)^2=2009\)
\(\Leftrightarrow\left(k-n-2\right)\left(k+n+2\right)=2009=1.2009=7.287=41.49\)
Do \(k-n-2< k+n+2\) nên ta chỉ cần xét 3 trường hợp:
\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\) \(\Rightarrow2n+4=2008\Rightarrow n=1002\)
\(\left\{{}\begin{matrix}k-n-2=7\\k+n+2=287\end{matrix}\right.\) \(\Rightarrow n=138\)
\(\left\{{}\begin{matrix}k-n-2=41\\k+n+2=49\end{matrix}\right.\) \(\Rightarrow n=2\)
Vậy \(n=\left\{2;138;1002\right\}\)
cho a+b+c khác 0 và \(a^3+b^3+c^3=3abc\)Tính \(N=\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)
Ta có: a3 + b3 + c3 = 3abc
\(\Leftrightarrow\)a3 + b3 + c3 - 3abc = 0
\(\Leftrightarrow\)(a + b)3 + c3 - 3ab2 - 3a2b - 3abc = 0
\(\Leftrightarrow\)(a + b + c)[(a + b)2 - c(a + b) + c2 ] - 3ab(a + b + c) = 0
\(\Leftrightarrow\)(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
\(\Leftrightarrow\)(a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0
Vì a + b + c khác 0 nên
a2 + b2 + c2 - ab - bc - ca = 0
\(\Leftrightarrow\)2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
\(\Leftrightarrow\)(a - b)2 + (b - c)2 + (c - a)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Leftrightarrow\)a = b = c
N = \(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)= 1
Đây là toán so tài giữa tôi vs Hoàng CTV mấy bạn đừng trả lời vô nhé
mong thầy cô đừng hiểu lầm
Cho \(a,b,c\ne0\)Và \(a^3+b^3+c^3=3abc\)
tính \(N=\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)
Ta có : \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-cb\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-cb-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-cb\right)=0\)
Vi a,b,c khác 0 Nên : \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
<=> a = b = c
Vậy \(N=\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}=\frac{a^{2016}+a^{2016}+a^{2016}}{\left(a+a+a\right)^{2016}}=\frac{3.a^{2016}}{3^{2016}.a^{2016}}=\frac{1}{3^{2015}}\)
a)Tìm số tự nhiên n mà \(\frac{5}{n-1}\)là số nguyên
b) Tính M = \((1-\frac{1000}{2016})×\left(1-\frac{1001}{2016}\right)×\left(1-\frac{1002}{2016}\right)×\dots×\left(1-\frac{2017}{2016}\right)\)
a) để 5/n-1 là số nguyên thì 5 chia hết cho n-1
=> n-1 thuộc Ư(5)=( 1, -1, 5, -5)
ta có
n-1=1=>n=2
n-1=-1=>n=0
n-1=5=>n=6
n-1=-5=>n=-4
mà n là số tự nhiên => n thuộc 2,0,6
máy mik bị lỗi bàn phím nên phải gõ ngoặc khác thay thế TvT, sorry nghen
b) M=(1-1000/2016) *...*(1-2016/2016)*(1-2017/2016)
=>M=(1-1000/2016)*.....*0*(1-2017/2016)
=>M=0
Bài 1:Cho A=7+73+75+...+72015.Chứng minh A chia hết cho 35
Bài 2:Tìm các số tự nhiên a,b sao cho:
a)\(\frac{5}{a}-\frac{2}{b}=\frac{1}{4}\)
b)\(a-b=5và\frac{\left(a,b\right)}{\left[a,b\right]}\frac{1}{6}\)
Bài 3:Tìm số tự nhiên n để phân số\(A=\frac{5n-11}{4n-13}\)có giá trị lớn nhất và nhỏ nhất là bao nhiêu
Bài 4:Thực hiện tính:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
CHO CÁC SỐ DƯƠNG a,b,c khác d và \(\frac{a}{b}=\frac{c}{d}\)
CMR. \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-b^{2017}\right)^{2016}}\)
bài này dễ vào TH 0,5 điểm trong bài thi
nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)
áp dụng t/c dãy t/s = nhau
\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)
biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé
1,TÌm GTNN của P biết P=\(\frac{12}{x^2+\left|y-13\right|+14}\)
2,Tìm số nguyên n để P=\(\frac{n+2}{n-5}\)có giá trị lớn nhất
3,Cho n là số tự nhiên có 2 chữ số.Tìm n biết n+4 và 2n đều là số chính phương
4,cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)
Tính B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)\)
5, So sánh \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
6,Tìm GTLN của S=\(\frac{x^2+2016}{x^2+2015}\)
GIẢI DÙM MK VS MK ĐANG CẦN GẤP
MƠN MN TRƯỚC
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
5,
Ta so sánh 3227 và 1839
3227 =(25)27 = 2135 < 2156 = (24)39 = 1639 < 1839
Vậy (-32)27 > (-18)39
6, làm tương tự 2