cho P = 1-\(\sqrt{x}\) với x>0
tìm m để x thỏa mãn \(\left(\sqrt{x}+1\right).P>\sqrt{x}+m\)
Câu 1: Cho P=\(\frac{x-1}{\sqrt{x}}\) với \(x>0,x\ne1\) Tìm m để có x thỏa mãn \(P.\sqrt{x}=m-\sqrt{x}\)
Câu2: Cho P=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\) với \(x\ge0,x\ne4,x\ne9\) Tìm m để có x thỏa mãn \(P.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\)
Câu 3 Cho P=\(\frac{4x}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\) Tìm m để có x>9 thỏa mãn \(m.\left(\sqrt{x}-3\right).P>x+1\)
Câu 4 cho P=\(1-\sqrt{x}\) với \(x>0,x\ne4\) Tìm m để có x thỏa mãn \(P.\left(\sqrt{x}+1\right)\ge\sqrt{x}+m\)
câu 2:\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\Leftrightarrow\sqrt{x}-2-mx-m+2=0\Leftrightarrow\sqrt{x}=m\left(x+1\right)\Leftrightarrow m=\frac{\sqrt{x}}{x+1}\)
vì x>=0 =>x+1>0 \(\sqrt{x}\ge0\)=> m phải >=0
\(x\ne4\Rightarrow x+1\ne5;\sqrt{x}\ne2\Rightarrow m\ne\frac{2}{5}\)
\(x\ne9\Rightarrow x+1\ne10;\sqrt{x}\ne3\Rightarrow m\ne\frac{3}{10}\)
Cho P = \(\left(\frac{4\sqrt{x}}{\sqrt{x}+2}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm x để P = -1
c) Tìm m để có x thỏa mãn : \(\left(\sqrt{x}-3\right)P< 1-2\sqrt{x}-m\)
Làm giúp mình với
Cho biểu thức P=\(\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\div\left(\frac{x\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)
a) Rút gọn P
b) Tìm x để P=\(\sqrt{x}-2\)
c) Tìm GTNN của P
d) Tìm m để có x thỏa mãn \(\left(\sqrt{x}+1\right)\times P=m-x\)
Cho biểu thức P=\(\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a/ Rút gọn P
b/ Tìm các GT của x để P>0
c/Tìm các số m để có các GT của x thỏa mãn P.\(\sqrt{x}\)=m-\(\sqrt{x}\)
co biểu thức P=\(\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{4x\sqrt{x}+3x+9}{x-\sqrt{x}-6}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}+3}{x+5\sqrt{x}+6}\right)\)
tìm giá trị của m để có giá trị x>1 thỏa mãn: \(m\left(\sqrt{x}-3\right)P=12m\sqrt{x}-4\)
Cho biểu thức: P=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x+1}}+\frac{2}{x-1}\right)\)
a, Tìm ĐKXĐ để P có nghĩa
b, Rút gọn P
c, Tìm x để tính giá trị của P khi x=\(\sqrt{8-2\sqrt{15}}\)
d,Tìm x để P>0
e, Tìm m để có giá trị của x thỏa mãn \(P-\sqrt{x}=m-\sqrt{x}\)
Cho pt \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt GTNN.
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
Cho biểu thức : \(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
a, Rút gọn P
b, Tìm giá trị của x để P=-1
c, Tim m để x>4 thỏa mãn :
\(m\left(\sqrt{x}-3\right).P>x+1\)
Cho biểu thức :
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a) Tìm ĐKXĐ của x và y để P xác định . Rút gọn P
b) Tìm x , y nguyên thỏa mãn phương trình P = 2
a) ĐKXĐ : \(x,y\ge0;y\ne1;x+y\ne0\)
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
\(=\frac{x\left(1+\sqrt{x}\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)
\(=\frac{\left(x-y\right)+\left(x\sqrt{x}+y\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+x-\sqrt{xy}+y-xy\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-\sqrt{y}\left(\sqrt{x}+1\right)+y\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}\)
\(=\frac{\sqrt{x}-\sqrt{y}+x-y\sqrt{x}}{1-\sqrt{y}}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{1-\sqrt{y}}\)
\(=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
Vậy P \(=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
b) ĐKXĐ : \(x,y\ge0;y\ne1;x+y\ne0\)
\(P=2\Leftrightarrow\) \(\sqrt{x}+\sqrt{xy}+\sqrt{y}=2\) ( * )
\(\Leftrightarrow\sqrt{x}\left(1+\sqrt{y}\right)-\left(\sqrt{y}+1\right)=1\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=1\)
Có : \(1+\sqrt{y}\ge1\Rightarrow\sqrt{x}-1\le1\Leftrightarrow0\le x\le4\Rightarrow x=0;1;2;3;4\)
Thay x = 0 ; 1 ; 2 ; 3 ;4 vào ( * )
Ta có các cặp giá trị : x =4 ; y = 0 và x = 2 ; y = 2 ( TM )