Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tùng
Xem chi tiết
Nguyễn Thị BÍch Hậu
2 tháng 7 2015 lúc 21:55

câu 2:\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\Leftrightarrow\sqrt{x}-2-mx-m+2=0\Leftrightarrow\sqrt{x}=m\left(x+1\right)\Leftrightarrow m=\frac{\sqrt{x}}{x+1}\)

vì x>=0 =>x+1>0 \(\sqrt{x}\ge0\)=> m phải >=0

\(x\ne4\Rightarrow x+1\ne5;\sqrt{x}\ne2\Rightarrow m\ne\frac{2}{5}\)

\(x\ne9\Rightarrow x+1\ne10;\sqrt{x}\ne3\Rightarrow m\ne\frac{3}{10}\)

 

 

 

An Vy
Xem chi tiết
huybro2k3
Xem chi tiết
Phùng Minh Quân
1 tháng 9 2017 lúc 11:36

Có biết đâu mà giúp.Toàn x với x.

shoppe pi pi pi pi
Xem chi tiết
Linh Nguyen
Xem chi tiết
1234win
Xem chi tiết
Niki Rika
Xem chi tiết
Người Vô Danh
24 tháng 3 2022 lúc 22:26

\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)

 với mọi m => pt có 2 nghiệm phân biệt x1 và x2

theo Viet (điều kiện m > -1/2)

\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)

\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)

dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)

viethung_7102
Xem chi tiết
Tạ Hữu Việt
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
8 tháng 10 2019 lúc 20:30

a) ĐKXĐ : \(x,y\ge0;y\ne1;x+y\ne0\)

\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{x\left(1+\sqrt{x}\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{\left(x-y\right)+\left(x\sqrt{x}+y\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+x-\sqrt{xy}+y-xy\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-\sqrt{y}\left(\sqrt{x}+1\right)+y\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}-\sqrt{y}+x-y\sqrt{x}}{1-\sqrt{y}}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{1-\sqrt{y}}\)

\(=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

Vậy P \(=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

b) ĐKXĐ : \(x,y\ge0;y\ne1;x+y\ne0\)

\(P=2\Leftrightarrow\) \(\sqrt{x}+\sqrt{xy}+\sqrt{y}=2\) ( * )

\(\Leftrightarrow\sqrt{x}\left(1+\sqrt{y}\right)-\left(\sqrt{y}+1\right)=1\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=1\)

Có : \(1+\sqrt{y}\ge1\Rightarrow\sqrt{x}-1\le1\Leftrightarrow0\le x\le4\Rightarrow x=0;1;2;3;4\)

Thay x = 0 ; 1 ; 2 ; 3 ;4 vào ( * )

Ta có các cặp giá trị : x =4 ; y = 0 và x = 2 ; y = 2 ( TM )