Chứng tỏ rằng hiệu ab - ba (với a \(\ge\) b) bao giờ cũng chia hết cho 9.
Chứng tỏ rằng hiệu \(\overline{ab}-\overline{ba}\) (với \(a\ge b\) ) bao giờ cũng chia hết cho 9 ?
Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)
\(=10a+b-10b-a=10a-10b+b-a\)
\(=10\left(a-b\right)-\left(a-b\right)=\left(10-1\right)\left(a-b\right)=9\left(a-b\right)⋮9\)
( Vì \(9⋮9\) ; \(a\ge b\) ) \(\Rightarrow\overline{ab}-\overline{ba}⋮9\)
Vậy \(\overline{ab}-\overline{ba}⋮9\)
Ta có:
\(\overline{ab}=10.a+b\)
\(\overline{ba}=10.b+a\)
\(=>\overline{ab}-\overline{ba}=10a+b-10b+a\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
\(=>\overline{ab}-\overline{ba}⋮9\left(dpcm\right)\)
Ta có : ¯¯¯¯¯ab−¯¯¯¯¯ba=(10a+b)−(10b+a)ab¯−ba¯=(10a+b)−(10b+a)
=10a+b−10b−a=10a−10b+b−a=10a+b−10b−a=10a−10b+b−a
=10(a−b)−(a−b)=(10−1)(a−b)=9(a−b)⋮9=10(a−b)−(a−b)=(10−1)(a−b)=9(a−b)⋮9
( Vì 9⋮99⋮9 ; a≥ba≥b ) ⇒¯¯¯¯¯ab−¯¯¯¯¯ba⋮9⇒ab¯−ba¯⋮9
Vậy ¯¯¯¯¯ab−¯¯¯¯¯ba⋮9
Chứng tỏ rằng hiệu ab - ba ( với a > b ) bao giờ cũng chia hết cho 9
Ta có: ab-ba=(10a+b)-(10b+a)=9a-9b, chia hết cho 9
Chúc bạn học giỏi nha!
Ta có:
ab = 10a + b
ba = 10b + a
Thay vào bài toán , ta được :
ab - ba = ( 10a + b ) - ( 10b + a )
= 10a + b - 10b - a
= 10a - a - 10b + 9 ( bước này có thể bỏ nhé, mình viết ra cho bạn hiểu thôi )
= 9a - 9b chia hết cho 9
Vậy ab - ba Chia hết cho 9
chứng tỏ rằng hiệu ab-ba(với a >hoặc =b)bao giờ cũng chia hết cho 9
Ta có :
ab - ba = 10a + b - (10b + a)
10 + b - 10b - a = ab - ba
=> 9a - 9b = ab - ba
9(a - b) chia hết cho 9 do có cơ số 9 (luôn đúng với mọi số a và b)
Vậy ab - ba chia hết cho 9 (đpcm)
Ta có : ab-ba = 10a+b - ( 10b+a )
10b- 10b-a = ab-ba
=> 9a-9b = ab-ba
9 ( a-b ) chia hết cho 9 vì có cơ số 9 ( luôn đúng với mọi số a và b )
Vậy ab-ba chia hết cho 9 ( đpcm )
chứng tỏ rằng hiệu ab - ba (với a lớn hơn hoặc bằng b) bao giờ cũng chia hết cho 9
Ta có: ab - ba= 10a + b -( 10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9( a - b) chia hết cho 9 với mọi a, b
Vậy hiệu ab - ba (với a lớn hơn hoặc bằng b) bao giờ cũng chia hết cho 9.
\(ab-ba=10a+b-10b+a=9a-9b=9\left(a-b\right)\) chia het cho 9.
ta có:ab-ba=10+b-(10b+a)
=10a+b-10b-a
=9a-9b
=9(a-b) chia hết cho 9 với cả a và b
vậy hiệu ab-ba(với a lớn hơn hoặc bằng b)bao giờ cũng chia hết cho 9
Trả lời nhanh hộ . cần .
1, Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
2, Chứng tỏ rằng hiệu ab - ba ( với a >_ b ) bao giờ cũng chia hết cho 9.
Giải hộ , cụ thể.
aaa = 100a + 10a + a
= a×111
= a×3×37 \(⋮\)37
\(\Rightarrow\)aaa \(⋮\)37.
1. Ta có: aaa = 111 * a
Mà 111 chia hết cho 37
=> Số có dạng aaa luôn chia hết cho 37
Chứng tỏ rằng hiệu ab-ba với a lớn hơn hoặc bằng b bao giờ cũng chia hết cho 9
Ta có:
\(\overline{ab}\) ‐\(\overline{ba}\)= 10a + b ‐﴾ 10b + a﴿
= 10a + b ‐ 10b ‐ a
= 9a ‐ 9b
= 9﴾ a ‐ b﴿\(⋮\)9 với mọi a, b.
Vậy hiệu \(\overline{ab}\) ‐ \(\overline{ba}\) ﴾với a lớn hơn hoặc bằng b﴿ bao giờ cũng chia hết cho 9.
1 chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
2 chứng tỏ rằng hiệu ab - ba (với a> b)bao giờ cũng chia hết cho 9
1) \(\overline{aaa}=111.a=37.3.a\)\(⋮\)\(37\)
=> đpcm
2) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)\)\(⋮\)\(9\)
=> đpcm
1) chứng tỏ rằng nấu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng cha hết cho 7
2) chứng tỏ rằng số có dạng aaa ( gạch trên đầu) bao giờ cũng chia hết cho 37
3) chúng tỏ rằng hiệu ab-ba (gạch trên đầu) (với a lớn hơn hoặc bằng b) ao giờ cũng chia hết cho 9
1/ Gọi 2 số đó là a,b thỏa mãn a:7=k dư c và b/7=m dư c. =>a=7k+c và b=7m+c
a-b=7k+c-(7m+c)=7k-7m=7(k-m) chia hết cho 7
2/ Ta có aaa chia hết cho 111 và 111=3.37 chia hết cho 37 nên aaa chia hết cho 37.
c/ ab-ba=10a+b-10b-a=9a-9b=9(a-b) chia hết cho 9
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
Cho hỏi mấy câu này nha ( kèm theo lời giải )
[ Câu 1 ] Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
[ Câu 2 ] Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
[ Câu 3 ] Chứng tỏ rằng hiệu ab - ba ( với a > b ) bao giờ cũng chia hết cho 9
1) aaa=a.111=a.3.37
Do đó aaa chia hết cho 37 ( đpcm)
2) Gọi 2 số có cùng số dư khi chia cho 7 là a và b ( cùng dư r, r<7)
Khi đó a=7k+r , b=7h+r
a-b=(7k+r)-(7h+r)=7k+r-7h-r=7k-7h=7(k-h)
=> ĐPCM
3) ab-ba=(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b)
Rỗ ràng chia hết cho 9 =>ĐPCM
Câu 1: aaa = a.111 = a.3.37 => chia hết cho 37
Câu 2:
Gọi a và b là hai số có cùng số dư m khi chia hết cho 7 nên
a-m chia hết cho 7
b-m chia hết cho 7
=> (a-m)-(b-m) = a-b chia hết cho 7
Câu 3: (ab - ba)=10.a+b-10.b-a=9.a-9.b=9(a-b) chia hết cho 9