Tim SNT ( so nguyen to ) P DE:
a) p + 2, p+ 94 cungx la SNT
b) p+6,p+8,p+12,p+14 cungx la SNT
Cho p la snt lon hon 3. Biet 8p + 1 cung la snt . Hoi 4p + 1 la so nguyen to hay hop so.
Ta thấy : 8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp
=> Tích của chúng chia hết cho 3
Mà p là số nguyên tố và 8 không chia hết cho 3
=> 8p không chia hết cho 3 (1)
Ta có:8p + 1 là số nguyên tố
=> 8p + 1 không chia hết cho 3 (2)
Từ (1) và (2) => 8p + 2 chia hết cho 3
Ta có: 8p + 2 = 2 ( 4p + 1 )
=> 4p + 1 chia hết cho 3 (vì 2 không chia hết cho 3)
Hay 4p + 1 là hợp số.
Chúc bạn học tốt!
Cho p la snt lon hon 3. Biet 8p + 1 cung la snt . Hoi 4p + 1 la so nguyen to hay hop so.
tim cac so nguyen duong n sao cho 2^2/60-n la SNT
Tìm SNT p để :
a) p+2 ; p+94 đều là SNT ?
b) p+6 ; p+8 ; p+12 ; p+14 đều là SNT ?
tim so nguyen to sao cho p+2+p+6 p+8 p+12 p+14 cung la so nguyen to
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,P+14 là SNT
a) Trường hợp 1: P=3
\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố
Trường hợp 2: P>3
\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))
Với P=3k+1(\(k\in N\))
\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)
\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)
Với P=3k+2(\(k\in N\))
\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)
\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)
Vậy: P=3
b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố
Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))
Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố
=> Loại
Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố
=> Loại
Vậy: P=3
tim so tu nhienK sao cho :
a. 70.K la so nguyen to
b. K ;k+6;K; K+8;K+12;K+14 deu la so nguyen to
cho a+ b = p la snt . chung to rang a va b la hai so nguyen to cung nhau . minh can gap
Lời giải:
Gọi $d=ƯCLN(a,b)$
$\Rightarrow a\vdots d; b\vdots d$
$\Rightarrow a+b\vdots d\Rightarrow p\vdots d$
Mà $p$ là snt nên $d=1$ hoặc $d=p$
Nếu $d=p$ thì $a\vdots p\Rightarrow a\vdots a+b$ (vô lý với mọi $a,b$ là số nguyên dương.
$\Rightarrow d=1$
$\Rightarrow a,b$ là 2 số nguyên tố cùng nhau.
Bai 1: Tim x va y
a) ( x+ 5) .( x-3) = 15
b)( 2x -1).(y + 2) =24
c)x.y+y+x =30
d) 3x.y+2x +2y=0
Bài 2: tìm các số nguyên tố P
a) de P +2;P+94 cung la so nguyen to
b) de P+6;P+8;P+12;P+14 cung la so nguyen to
tim so nguyen to p sao cho:
a,p+2 va p+4 la so nguyen to
b,p+2 va p+6 va p+8 la so nguyen to
c,p+10 va p+14 la so nguyen to
A+C , Số cần tìm là 3: Bởi vì nếu số cần tìm là p\(\ne\)3
Thì p chia 3 dư 1 hoặc 2
Ta có p = 3n +1 hoặc p= 3n +2
=> p + 2 = 3n+1+2 =3n +3( chia hết cho 3 không phải là số nguyên tố)
p + 4 = 3n +2 + 4=3n+6 ( chia hết cho 3 không phải là số nguyên tố)
p+ 10= 3n+2 +10= 3n+12 ( chia hết cho 3 không phải là số nguyên tố)
p + 14=3n +1+14 = 3n+15( chia hết cho 3 không phải là số nguyên tố)
B) Câu B đề hơi lạ nên mình đoán đại luôn ^^ ( nếu có thêm p+14 là số nguyên tố thì giải tương tự câu A và C )