Từ điểm K nằm ngoài đường tròn (O) kẻ hai tiếp tuyến KA; KB và cát tuyến KCD với đường tròn. Gọi H là trung điểm CD, AH xắt đường tròn tại F. Chứng minh BF // CD
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
a: góc OHK+góc OBK=180 độ
=>OHKB nội tiếp
b: góc AHK=góc AOK
góc BHK=góc BOK
mà góc AOK=góc BOK
nên góc AHK=góc BHK
=>HK là phân giác của góc AHB
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
Cho đường tròn (O) và điểm K nằm bên ngoài đường tròn (O). Kẻ hai tiếp tuyến KA,KB với đường tròn (O), A và B là các tiếp điểm. Từ điểm K vẽ đường thẳng d cắt đường tròn (O) tại hai điểm C,D (KC <KD, d không đi qua tâm O).
1) Chứng minh tứ giác KAOB là tứ giác nội tiếp.
2) Gọi giao điểm của đoạn thẳng AB với đoạn thẳng OK là M. Chứng minh KA²=KC.KD =KM.KO.
3) Chứng minh đường thẳng AB chứa tia phân giác của CMD
1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)
nên KAOB là tứ giác nội tiếp
2: Xét (O) có
\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{KAC}=\widehat{ADC}\)
Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
\(\widehat{AKC}\) chung
Do đó: ΔKAC đồng dạng với ΔKDA
=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)
=>\(KA^2=KC\cdot KD\)
Xét (O) có
KA,KB là các tiếp tuyến
Do đó: KA=KB
=>K nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OK là đường trung trực của AB
=>OK\(\perp\)AB tại M và M là trung điểm của AB
Xét ΔOAK vuông tại A có AM là đường cao
nên \(KM\cdot KO=KA^2\)
=>\(KA^2=KM\cdot KO=KC\cdot KD\)
Cho đường tròn tâm (O) và điểm K nằm ngoài đường tròn. Từ K kẻ các tiếp tuyến KA,KB đến (O). Một đường thẳng qua K cắt (O) tại C,D sao cho C nằm giữa K và D, đồng thời hai điểm O, A nằm khác phía so với CD.
a) CM tứ giác OAKB nội tiếp và KA2= KC.KD
b) Gọi M là giao điểm của đoạn OK và AB. CM góc KMC=KDO
c) Kẻ đường kính AI của (O). Gọi G, N lần lượt là giao điểm của OK với các đoạn CI, DI. Chứng minh tứ giác AMND nội tiếp và OG=ON.
a: góc OAK+góc OBK=90+90=180 độ
=>OAKB nội tiếp
Xét ΔKAC và ΔKDA có
góc KAC=góc KDA
góc AKC chung
=>ΔKAC đồng dạng với ΔKDA
=>KA^2=KC*KD
b: Xét (O) có
KA,KB là tiếp tuyến
=>KA=KB
=>OK là trung trực của AB
=>KM*KO=KA^2=KC*KD
=>KM/KD=KC/KO
=>ΔKMC đồng dạng với ΔKDO
=>góc KMC=góc KDO
Cho đường tròn tâm (O) và điểm K nằm ngoài đường tròn. Từ K kẻ các tiếp tuyến KA,KB đến (O). Một đường thẳng qua K cắt (O) tại C,D sao cho C nằm giữa K và D, đồng thời hai điểm O, A nằm khác phía so với CD. a) CM tứ giác OAKB nội tiếp và KA2= KC.KD b) Gọi M là giao điểm của đoạn OK và AB. CM góc KMC=KDO c) Kẻ đường kính AI của (O). Gọi G, N lần lượt là giao điểm của OK với các đoạn CI, DI. Chứng minh tứ giác AMND nội tiếp và OG=ON.
a: góc OAK+góc OBK=180 độ
=>OAKB nội tiếp
Xét ΔKAC và ΔKDA có
góc KAC=góc KDA
góc AKC chung
=>ΔKAC đồng dạng với ΔKDA
=>KA/KD=KC/KA
=>KA^2=KD*KC
b: Xét (O) có
KA,KB là tiếp tuyến
=>KA=KB
mà OA=OB
nên OK là trung trực của AB
=>OK vuông góc AB tại M
Xét ΔOAK vuông tại A có AM vuông góc OK
nên KM*KO=KA^2=KC*KD
=>KM/KD=KC/KO
=>ΔKMC đồng dạng với ΔKDO
=>góc KMC=góc KDO
Cho đường tròn ( O) điểm k nằm bên ngoài đường tròn. Kẻ các tiếp tuyến KA, KA vs đường tròn( A , B là các tiếp điểm) kẻ đường kính AOC .tiếp tuyến của (O) tại C giao AB tại E
C/M: tam giác KBC đồng dạng vs tam giác OBE
Cho K là điểm nằm ngoài đường tròn (O) .Từ K kẻ các tiếp tuyến KA, KB tới đường tròn (O) (A,B là hai tiếp điểm) và cát tuyến KCD sao cho BD là đường kính của đường tròn (O)
a) CMR: tứ giác KAOB nội tiếp đường tròn
b) CM: \(KA^2=KC.KD\)
c) Gọi M là giao điểm của AC và KO và H giao điểm của OK và AB. CMR: MH=MK
Cho đường tròn (O) và điểm K nằm ngoài đường tròn (O). Kẻ 2 tiếp tuyến KA,KB với đường tròn (O), A và B là các tiếp điểm. Từ kiểm K vẽ đường thẳng d cắt đường tròn (O) tại 2 điểm C,D (KC < KD, d không đi qua tâm O.
1) C/m: tứ giác KAOB là tứ giác nội tiếp
2) Gọi giao điểm của đoạn AB với đoạn OK là M. C/m KA^3 = KC.KD = KM.KO
3) C/m: đường thẳng AB chứa tia phân giác của góc CMD
cho đường tròn tâm O va điểm M nằm ngoài đường tròn.Từ M kẻ tiếp tuyến MA. A là tiếp điểm,từ A kẻ đường vuông góc với OM tại H.Cắt đường tròn tại B.
a)Chứng minh H là chung điểm của AB,
b)Chứng minh MB là tiếp tuyến của đường tròn
c)Lấy E nằm trên cung nhỏ AB,từ E kẻ tiếp tuyến với đường tròn cắt MA:MB lần lượt tại K và I.Chứng minh IK=KA+IB
Cho (O), từ điểm K nằm ngoài đường tròn kẻ tiếp tuyến KA,KB; cát tuyến KCD. M là trung điểm của AB. CMR: \(\widehat{ADC}=\widehat{BDM}\)