Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura
Xem chi tiết
Trang Đỗ Mỹ
Xem chi tiết
Đặng Phan Nhật Huy
17 tháng 5 2024 lúc 23:10

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp

 

Hảải Phongg
Xem chi tiết
Luong Ngoc Quynh Nhu
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Hảải Phongg
22 tháng 1 2017 lúc 20:00

giải zõ hộ

Nguyễn Khắc Quang
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:07

Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).

Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).

Khi đó y = 1.

Vậy...

nguyen thuy nga
Xem chi tiết
SC__@
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Mai Ánh Tuyết
Xem chi tiết
pink princess
Xem chi tiết
Trần Thanh Phương
26 tháng 8 2020 lúc 20:25

\(x^4+2x^3+3x^2+2x=y^2-y\)

\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)

Đến đây chắc khó.

Khách vãng lai đã xóa
An Vy
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
 Kaxx
27 tháng 4 2019 lúc 22:29

tham khảo nè

https://olm.vn/hoi-dap/detail/98464874210.html

Đào Thu Hoà
27 tháng 4 2019 lúc 22:53

Với x=-1 => y^3=-4 (loại)

Với x=0 => y^3=-2 (loại)

Với x=1 => y^3=4 (loại)

+ ) Với \(\hept{\begin{cases}x\le-2\\x\ge2\end{cases}\Rightarrow}\left(x+2\right)\left(2x-1\right)\ge0.\Leftrightarrow2x^2+3x-2\ge0\)

\(\Leftrightarrow x^3+2x^2+3x-2\ge x^3\)(1)

Ta có : \(-x^2< 3\Leftrightarrow-x^2-2< 1\Leftrightarrow2x^2-2< 3x^2+1\)\(\Leftrightarrow x^3+3x+2x^2-2< x^3+3x+3x^2+1\)

\(\Leftrightarrow x^3+2x^2+3x-2< \left(x+1\right)^3\)(2)

Từ (1) và (2) suy ra \(x^3\le x^3+2x^x+3x-2=y^3< \left(x+1\right)^3\)

\(\Rightarrow y^3=x^3+2x^2+3x-2=x^3\Leftrightarrow2x^3+3x-2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\Rightarrow x=-2\)

Thay x=-2 vào phương trình ban đầu ta tìm được y^3=-8 -=> y=-2

Vậy....(-2;-2)

Ta

Thuhuyen Le
Xem chi tiết