giai pt: x^2+6x+11=(x+6)*√(x^2+11)
Giải PT:
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Chỗ Bunyakovsky mình sửa lại 1 chút:
\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\) \(\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)
\(=2\left(x-2+4-x\right)\) \(=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Hơn nữa \(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
Từ đó dấu "=" phải xảy ra ở cả 2 BĐT trên, tức là:
\(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{4-x}\\x-3=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy pt đã cho có nghiệm duy nhất \(x=3\)
Đính chính
...Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)=2.2=4\)
\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le2\)
mà \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(pt\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt[]{x-2}}=\dfrac{1}{\sqrt[]{4-x}}\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=4-x\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x=3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy \(x=3\) là nghiệm của pt (1)
\(\sqrt[]{x-2}+\sqrt[]{4-x}=x^2-6x+11\left(1\right)\)
\(\Leftrightarrow1.\sqrt[]{x-2}+1.\sqrt[]{4-x}=x^2-6x+11\)
Điều kiện xác định khi và chỉ khi
\(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\) \(\Leftrightarrow2\le x\le4\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có :
\(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\le\left(1^2+1^2\right).\left(x-2+4-x\right)=2.2=4\)
\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le4\)
\(pt\left(1\right)\Leftrightarrow x^2-6x+11=4\)
\(\Leftrightarrow x^2-6x+7=0\)
\(\Delta'=9-7=2>0\)
⇒ pt có 2 nghiệm phân biệt \(x=3\pm\sqrt[]{2}\)
Vậy nghiệm của pt đã cho là \(x=3\pm\sqrt[]{2}\)
Giai he pt: \(\left\{{}\begin{matrix}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\end{matrix}\right.\)
Giai phương trình
a)\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
b)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
<=>\(\left|x-2\right|+\left|x-3\right|=1\)
đến đây chia 3 trường hợp để phá trị tuyệt đối là ra
b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
câu này cũng tương tự câu a nha
bài 1 giai cac pt sau
a 11-2x =x-1
b 5(3x+2)=4x+1
c x mũ 2 -4-(x-2)(x-5)
a,\(11-2x=x-1\Leftrightarrow-2x-x=-1-11\Leftrightarrow-3x=-12\Leftrightarrow x=-4\)
b,\(\text{5(3x+2)=4x+1}\Leftrightarrow15x+10=4x+1\Leftrightarrow15x-4x=1-10\Leftrightarrow11x=-9\Leftrightarrow x=\dfrac{-9}{11}\)
c,\(x^2-4-\left(x-2\right)\left(x-5\right)\Leftrightarrow\left(x+2\right)\left(x-2\right)-\left(x-2\right)\left(x-5\right)\Leftrightarrow\left(x-2\right)[\left(x+2\right)-\left(x-5\right)]\Leftrightarrow\left(x-2\right)\left[x+2-x+5\right]\Leftrightarrow\left(x-2\right)7\Leftrightarrow7x-14\)
6x+căn của(x+2)+2 căn của(3-x)=8 căn của(6+x-x^2)...giai pt bang cach dat an phu
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
giải PT
Cách khácP:
Áp dụng bđt Bunhiacopski cho 2 bộ số \(\left(\sqrt{x-2};1\right)\)và \(\left(\sqrt{4-x};1\right)\)
\(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le\left(1+1\right)\left(x-2+4-x\right)\)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Xét \(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\)
Từ đó suy ra VT = VP khi \(\hept{\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\\left(x-3\right)^2+2=2\end{cases}}\Leftrightarrow x=3\)
Vậy nghiệm duy nhất của phương trình là 3
ĐK: \(2\le x\le4\)
Đặt: \(t=\sqrt{x-2}+\sqrt{4-x}\ge0\)
<=> \(t^2=x-2+4-x+2\sqrt{-x^2+6x-8}\)
<=> \(t^2-2=2\sqrt{-x^2+6x-8}\)
=> \(-x^2+6x-8=\frac{t^4-4t^2+4}{4}\)
<=> \(x^2-6x+11=-\frac{t^4-4t^2+4}{4}+3\)
Khi đó ta có pt: \(t=-\frac{t^4-4t^2+4}{4}+3\)
<=> \(t^4-4t^2+4t-8=0\)
<=> \(t^2\left(t-2\right)\left(t+2\right)+4\left(t-2\right)=0\)
<=> \(\left(t-2\right)\left(t^3+2t^2+4\right)=0\)( với t >= 0 ta có t^3 + 2t^2 + 4 > 0)
<=> t - 2 = 0 <=> t = 2
Với t = 2 ta thay vào có nghiệm x = 2 ( tmđk)
Thử lại với bài toán ban đầu ta có x = 2 là nghiệm
Xin lỗi cô nhầm một chút: Thay t = 2 vào : \(t=\sqrt{x-2}+\sqrt{4-x}\). Giải ra ta có nghiệm bằng 3 ( chứ không phải bằng 2 đâu nhé)
Thử lại với bài toán ban đầu ta có x = 3 là nghiệm.
gải pt; \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Điều kiện xác định : \(2\le x\le4\)
Áp dụng bđt Bunhiacopxki vào vế trái của pt :
\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Lại có vế phải : \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Do đó pt tương đương với \(\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\x^2-6x+11=2\end{cases}\) \(\Leftrightarrow x=3\left(tmdk\right)\)
Vậy pt có nghiệm x = 3
giai pt
\(x^2+\sqrt{x+4}+\sqrt{x+11}=x+27\)
Giai PT:
\(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)