cho pt x^2 - 4x - m^2 - 1 = 0 CM pt luôn có 2 nghiệm pb thỏa mãn x2 = 5x1
Cho pt x2+2(m-2)+m2-4m= 0
a) CM pt luôn có 2 nghiệm phân biệt với mọi m
b) tìm m để pt có 2 nghiệm phân biệt thỏa x1, x2 thỏa mãn 3/x1+ x2 = 3/x2+x1
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
CHO PT ẨN X: X^2-(2M+3)X +M^2 +3M-10=0 (1)
a cm pt luôn luôn có 2 nghiệm x1,x2 với mọi m
btimf giá trị của m để pt (1) có 2 nghiệm thỏa mãn
1/x1+2x2=-1 2/ -11<x1<x2<20
cho pt x^2-4(m-1)x+1=0 (1) tìm điều kiên của m để pt (1) có 2 nghiệm pb x1,x2 thỏa mãn x1^3+x2^3=35
cho pt mx2 + 3(m+1)x +2m+4 = 0 . tìm m đêr pt có 2 nghiệm pb x1 ,x2 thỏa mãn tổng bình phương hai nghiệm bằng 4
Pt có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)
\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)
\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)
bài 10:
Cho pt x2+5x+m-2=0
Tìm m để pt có 2 nghiệm pb thỏa mãn \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\)
Lời giải:
Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$
$\Leftrightarrow m\leq \frac{33}{4}$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-5$
$x_1x_2=m-2$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$
$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$
$\Leftrightarrow m-2+5+1=\frac{-7}{2}$
$\Leftrightarrow m=\frac{-15}{2}$ (tm)
Lời giải:
Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$
$\Leftrightarrow m\leq \frac{33}{4}$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-5$
$x_1x_2=m-2$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$
$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$
$\Leftrightarrow m-2+5+1=\frac{-7}{2}$
$\Leftrightarrow m=\frac{-15}{2}$ (tm)
cho pt: x^2 - 4x + m = 0(m là tham số) b) Tìm m để pt có nghiệm x1, x2 thỏa mãn: 1/x1^2 + 1/x2^3 = 2
Cho phương trình: x^2 + 4x + m + 1 = 0. Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn pt \(\dfrac{x1}{x2}+\dfrac{x2}{x1}=\dfrac{10}{3}\)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
các bn lm ơn giải hộ mik bài này với .mik đang cần gấp,cảm ơn
tìm m để pt x^2+8x+3m+1=0 có nghiệm x1,x2 thỏa mãn :5x1-x2=2
\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)
Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Thế vào \(x_1x_2=3m+1\)
\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)
\(\Rightarrow m=2\) (thỏa mãn)
Cho pt: x2- (m-5)x + 2m + 6
a) Cm rằng pt đã cho luôn có 2 nghiệm với mọi giá trị của m
b) Tìm m để pt luôn có 2 nghiệm x1, x2 thỏa mãn: x13 + x23 = 35