Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cha Ron Su
Xem chi tiết
Trần Ái Linh
29 tháng 5 2021 lúc 20:52

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

đại thắng
Xem chi tiết
Duy vip Phạm Khánh Duy
Xem chi tiết
Sean Wang
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 12:01

Pt có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)

\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)

\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)

DŨNG
Xem chi tiết
Akai Haruma
26 tháng 5 2022 lúc 17:56

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

Akai Haruma
26 tháng 5 2022 lúc 17:57

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

hakhanhlinh
Xem chi tiết
gyurbsrg
Xem chi tiết
Trần Ái Linh
26 tháng 5 2021 lúc 21:18

PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`

Viet: `x_1+x_2=-4`

`x_1 x_2=m+1`

`(x_1)/(x_2)+(x_2)/(x_1)=10/3`

`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`

`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`

`<=> (4^2-2(m+1))/(m+1)=10/3`

`<=> m=2` (TM)

Vậy `m=2`.

Lam Phương
Xem chi tiết
long
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 12 2021 lúc 21:42

\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)

Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)

Thế vào \(x_1x_2=3m+1\)

\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)

\(\Rightarrow m=2\) (thỏa mãn)

Tô Thị Thùy Dương
Xem chi tiết