sqrt 2011 x-3 y -1\\ 2011x + sqrt(2011) * y = 0
Cho x+y+z=0. Chung minh rằng (2011x/xy+2011x+2011) +(y/yz+y+2011) +(z/xz+z+1) =1 b, cho x, y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0 Tính giá trị của M=(x+y) ^2015+(x-2)^2016+(y+1) ^2017
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
\(x^4\sqrt{x+3}=2x^4-2011x+2011\)
Cho xyz = 2011 chứng minh
2011x/(xy+2011x+2011) + y/(yz+y+2011) + z/(xz+z+1)=1
Cho 3 số x, y, z thoả mãn điều kiện xyz=2011. chứng minh rằng biểu thức sau không phụ thuộc vào các biến x, y, z :
\(\frac{2011x}{xy+2011x+2011}+\frac{y}{yz+y+2011}+\frac{z}{xz+z+1}\)
Phân thức thứ nhất
\(\frac{2011x}{xy+2011x+2011}=\frac{2011xz}{xyz+2011xz+2011z}=\frac{2011xz}{2011+2011xz+2011z}=\frac{2011xz}{2011\left(1+xz+z\right)}=\frac{xz}{xz+z+1}\)
Phân thức thứ hai
\(\frac{y}{yz+y+2011}=\frac{y}{yz+y+xyz}=\frac{y}{y\left(z+1+xz\right)}=\frac{1}{xz+z+1}\)
Cộng ba phân thức
=> biểu thức = \(\frac{xz+z+1}{xz+z+1}=1\)
Cho ba số x,y,z thỏa mãn xyz=2011. Tính giá trị của biểu thức
\(N=\frac{2011x}{xy+2011x+2011}+\frac{y}{yz+y+2011}+\frac{z}{xz+z+1}\)
Thay xyz = 2011 vào N được :
\(N=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}=\frac{xy.xz}{xy\left(z+xz+1\right)}+\frac{y}{y\left(z+xz+1\right)}+\frac{z}{z+xz+1}\)
\(=\frac{xz}{z+xz+1}+\frac{1}{z+xz+1}+\frac{z}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)
Cho xyz=2011
Chứng minh rằng \(\frac{2011x}{xy+2011x+2011}+\frac{y}{yz+y+2011}+\frac{z}{xz+z+1}=1\)
\(\frac{2011x}{xy+2011x+2011}+\frac{y}{yz+y+2011}+\frac{z}{zx+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{zx+z+1}\)
\(=\frac{x^2yz}{xy.\left(xz+z+1\right)}+\frac{y}{y.\left(xz+z+1\right)}+\frac{z}{zx+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{zx+z+1}\)
\(=\frac{xz+1+z}{xz+1+z}\)
\(=1\)
đpcm
Tại sao lại có nhìu đứa rảnh háng đi trả lời câu này nhỉ ?
Tìm x, y, z biết \(\frac{\sqrt{x-2009}-1}{x-2009x}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{x-2011}=\frac{3}{4}\)
\(pt\Leftrightarrow\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{\sqrt{y-2010}}{y-2010}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
Xảy ra khi \(\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)
Tìm các số hữu tỉ x , y thỏa mãn :
\(\left(\sqrt{2011}+\sqrt{2010}\right)+y\left(\sqrt{2011}-\sqrt{2010}\right)=\sqrt{2011^3}+\sqrt{2010^3}\).
Các số thực x, y, z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:
\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)
Vai trò \(x,y,z\) bình đẳng
Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:
\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)
\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)
\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)
\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)
Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)
Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)