Tìm giá trị nhỏ nhất và lớn nhất của đa thức f(x)=x^2 - 4x +9
nhỏ nhất = 5.
lớn nhất không biết nha bạn.
\(A\left(x\right)=\dfrac{4x^4+81}{2x^2-6x+9}\)
\(=\dfrac{4x^4+36x^2+81-36x^2}{2x^2-6x+9}\)
\(=\dfrac{\left(2x^2+9\right)^2-\left(6x\right)^2}{2x^2+9-6x}\)
\(=\dfrac{\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)}{2x^2+9-6x}\)
\(=2x^2+6x+9\)
=>\(M\left(x\right)=2x^2+6x+9\)
\(=2\left(x^2+3x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+3x+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(x+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{2}=0\)
=>\(x=-\dfrac{3}{2}\)
Tìm giá trị nhỏ nhất của đa thức sau: B(x) = 4x^2+ 4x - 5
B(x)=(2x)^2+2x+2x+1-6
=2x(2x+1)+(2x+1)-6
=(2x+1)^2-6
Vì (2x+1)^2>=0 với mọi x
B(x) >= -6 với mọi x
Dấu = xảy ra <=> 2x+1=0
<=> x=-1/2
Vậy GTNN B(x) =-6 <=> x=-1/2
tìm giá trị lớn nhất của đa thức 4x-x^2-12
tìm giá trị nhỏ nhất x^2+y^2-x+6y+15
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
Tìm giá trị nhỏ nhất của đa thức : x^2 - 4x + 25
\(x^2-4x+25\)
\(=\left(x^2-4x+4\right)+21\)
\(=\left(x-2\right)^2+21\)
\(\ge21\)
Bé hơn hoặc bằng 21 nha
Xin k
Tìm giá trị nhỏ nhất của biểu thức: 4x^2-4x-9
Ta có: 4x2-4x-9 = (4x2-4x+1)-10 = (2x-1)2-10 ≥ -10
Dấu "=" xảy ra ⇔ x=1/2
\(4x^2-4x-9=\left(2x-1\right)^2-10\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2-10\ge10\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
4x2-4x - 9
= 4x2 - 4x +1 - 10
= (2x -1)2 - 10 lớn hơn hoặc bằng -10
GTNN của 4x2-4x - 9 xảy ra khi (2x -1)2 = 0
2x-1 = 0
2x = 1
x=\(\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của đa thức: x2-4x+25
\(x^2-4x+25\)
\(=\left(x^2-4x+4\right)+21\)
\(=\left(x-2\right)^2+21\ge21\)
vậy giá trị nhỏ nhất của đa thức =21 khi x=2
Đàm Thu Thủy
x2 - 4x + 25
= (x2 + 4x + 4) + 21
= (x - 2)2 + 21 \(\ge\) 21
Vậy giá trị nhỏ nhất của đa thức sẽ bằng 21 khi x = 2
x2-4x+25=(x2-4x+4)+21
=(x-2)2+21
vì (x-2)2>=0 với mọi x
=>(x-2)2+21>=21 với mọi x
=>x2-4x+25>=21 với mọi x
dấu bằng xảy ra <=>(x-2)2=0
<=>x-2=0
<=>x=2
Tìm giá trị nhỏ nhất của đa thức A = 4 x – x 2
Ta có: A = 4x - x2 = -(x2 - 4x) = -[(x2 - 4x + 4) - 4]
= -[(x - 2)2 - 4] = -(x - 2)2 + 4 ≤ 4
Vậy giá trị lớn nhất của A bằng 4 khi x - 2 = 0 hay x = 2.
Tìm giá trị nhỏ nhất của đa thức \(4x^2+y^2-4x-2y+3\)
Đa thức = (4x^2-4x+1) + (y^2-2y+2) + 1
= (2x-1)^2 + (y-1)^2 + 1>=1
Dấu "=" xảy ra <=> x=1/2 ; y=1
Vậy Min đa thức = 1<=> x=1/2 ; y=1
\(A=4x^2-4x+1+y^2-2y+1+1=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
=> A\(\ge1\)
dấu = ảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)