Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Phương Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2018 lúc 4:53

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b

Nguyễn Minh Tuyền
Xem chi tiết
Le Nhat Phuong
30 tháng 8 2017 lúc 17:19

Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)

Đặt \(x=b+c-a>0\)

      \(y=a+c-b>0\)

     \(z=a+b-c>0\)

\(\Rightarrow a=\frac{"y+z"}{2}\)

\(\Rightarrow b=\frac{"x+z"}{2}\)

\(\Rightarrow c=\frac{"x+y"}{2}\)

\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)

\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)

\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)

Áp dụng công thức bdt Cauchy cho 2 số :

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng 3 bdt trên, suy ra :

\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"

P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé

orioles commit
Xem chi tiết

a. Tổng BC và CA là:

12 + 7= 19(cm)

b. Chu vi tam giác ABC là:

12 + 19= 31(cm)

Đ/s: a: 19cm

       b:31cm

Khách vãng lai đã xóa
Đặng Vũ Khang
9 tháng 5 2021 lúc 17:57

=100x5

Khách vãng lai đã xóa
Hiền Nguyễn Thị
Xem chi tiết
Phùng Minh Quân
30 tháng 11 2019 lúc 15:17

\(\hept{\begin{cases}\frac{ab}{c}+\frac{bc}{a}\ge2b\\\frac{bc}{a}+\frac{ca}{b}\ge2c\\\frac{ca}{b}+\frac{ab}{c}\ge2a\end{cases}}\) :))) 

Khách vãng lai đã xóa
Tạ Mi Na
Xem chi tiết
Lenna ^-^
Xem chi tiết
Trên con đường thành côn...
8 tháng 7 2023 lúc 9:43

BĐT\(\Leftrightarrow\dfrac{a}{-a+b+c}+\dfrac{b}{a-b+c}+\dfrac{c}{a+b-c}\ge3\)

Áp dụng BĐT Svac-xơ, ta có:

\(\dfrac{a^2}{-a^2+ab+ac}+\dfrac{b^2}{ab-b^2+bc}+\dfrac{c^2}{ac+bc-c^2}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

Ta có: \(a,b,c\) là 3 cạnh của 1 tam giác nên:

\(a\left(b+c\right)>a^2\). Tương tự và cộng theo vế, ta có:

\(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)>0\)

Ta sẽ chứng minh \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\ge3\left(1\right)\)

Thật vậy, \(BĐT\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)+\left(a+b+c\right)^2\ge6\left(ab+bc+ca\right)\), đúng

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Trên con đường thành côn...
8 tháng 7 2023 lúc 9:48

Cách 2:

Đặt \(\left\{{}\begin{matrix}-a+b+c=x\\a-b+c=y\\a+b-c=z\end{matrix}\right.\) với \(x,y,z>0\)

Khi đó ta có \(a=\dfrac{y+z}{2};b=\dfrac{x+z}{2};c=\dfrac{x+y}{2}\)

BĐT cần chứng minh trở thành:

\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\), đúng theo bđt Cauchy

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\Leftrightarrow a=b=c\)

Trần Thành Phát Nguyễn
Xem chi tiết
Nhật Hạ
Xem chi tiết
Đoàn Hữu Trường
5 tháng 3 2020 lúc 7:01

bo deo biet

Khách vãng lai đã xóa
Tô Hoài An
5 tháng 3 2020 lúc 7:52

Vì a, b, c là độ dài của 3 cạnh tam giác \(\Rightarrow a,b,c>0\)

Do chu vi của tam giác bằng 1 \(\Rightarrow a+b+c=1\Rightarrow b+c=1-a\)

Giả sử : \(ab+ac+bc>a\cdot b\cdot c\)

\(\Rightarrow ab+ac+bc-abc>0\)

\(\Rightarrow a\left(b+c\right)+bc\left(1-a\right)>0\Rightarrow a\left(b+c\right)+bc\left(b+c\right)>0\)

\(\Rightarrow\left(b+c\right)\left(a+bc\right)>0\)( thỏa mãn vì \(a,b,c>0\))

Vậy \(ab+bc+ac>a\cdot b\cdot c\)( ĐPCM )

Khách vãng lai đã xóa