Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thao nguyen phuong
Xem chi tiết
Phu Dang
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2021 lúc 15:41

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=16\)

\(\Rightarrow x+y\ge-4\)

\(S_{min}=-4\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2018 lúc 17:22

 

Đáp án D

Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0   (*)

Đặt x + y = u x y = v  ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0  gải ra ta được  u = v + 2 + v 2 + 28 v + 4 4

Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18  , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18  ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0  với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 )  trong đó t 0 = m i n t = m i n ( x y + y x )  với x,y thỏa mãn điều kiện (*).

Ta có :

t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2

Vậy  m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2019 lúc 13:24

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2019 lúc 11:46

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2018 lúc 11:22

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2019 lúc 5:50

Đáp án D

Ta có C 12 1 . C 10 1 = 120

Khi đó  C 12 1 . C 10 1 = 120   . Đặt C 12 1 . C 10 1 = 120

Ta luôn có C 12 1 . C 10 1 = 120

C 12 1 . C 10 1 = 120  Suy ra C 12 1 . C 10 1 = 120

Xét hàm số  f t = t 2 − 8 t + 3   trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1

Hàm số f(t)  liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞

Do đó, giá trị nhỏ nhất của f(t)  là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy  P min = − 3

Nguyễn Tuấn Dũng
Xem chi tiết
Akai Haruma
30 tháng 10 2023 lúc 19:17

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$

Phu Dang
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2021 lúc 15:23

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\)

\(\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(S_{min}=-\sqrt{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2017 lúc 4:23