tìm giá trị lớn nhất của biểu thức
A= 1
________________
/x+2017/+/x-2/
Tìm giá trị lớn nhất của biểu thức A=1 |x+2017|+|x-2|
\(\left|x+2017\right|+\left|x-2\right|=\left|x+2017\right|+\left|2-x\right|>=\left|x+2017+2-x\right|=2019\)
=>A=1/|x+2017|+|x-2|<=1/2019
Dấu = xảy ra khi -2017<=x<=2
Tìm giá trị lớn nhất của biểu thức A=1/ |x+2017|+|x-2|
lx+2017l +lx-2l > 0
Xét :
|x+2017| > 2017 với mọi x . Dấu bằng xảy ra khi và chỉ khi x = 0
|x-2| > 2 với mọi x. Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy giá trị lớn nhất của A \(=\frac{1}{2019}\) khi x = 0
\(A=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\)
TH1 : \(x\ge2\)\(\Rightarrow\left|x+2017\right|=x+2017\)
\(\left|x-2\right|=x-2\)
\(\Rightarrow A=\frac{1}{2x+2015}\)Do \(x\ge2\Rightarrow2x+2015\ge2019\)
\(\Rightarrow A\le\frac{1}{2019}\)Dấu '' = '' xảy ra khi x = 2
TH2 : \(x\le-2017\)\(\Rightarrow\left|x+2017\right|=-x-2017\)
\(\left|x-2\right|=2-x\)
\(\Rightarrow A=\frac{1}{-2x-2015}\)
\(x\le-2017\Rightarrow-2x\ge4034\)
\(\Rightarrow-2x-2015\ge2019\)
\(\Rightarrow A\le\frac{1}{2019}\). Dấu '' = '' xảy ra \(\Leftrightarrow x=-2017\)
TH3 : \(-2017< x< 2\)\(\Rightarrow\left|x+2017\right|=x+2017\)
\(\left|x-2\right|=2-x\)
\(\Rightarrow A=\frac{1}{2019}\)
Vậy GTLN của A là \(\frac{1}{2019}\)
Dấu '' = '' xảy ra \(\Leftrightarrow-2017\le x\le2\)
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tìm GTLN đó
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Tìm giá trị của a để biểu thức sau có giá trị
lớn nhất:
(2015 x 2016 x 2017 x 2018): (2018 - a)
Tìm giá trị lớn nhất , nhỏ nhất của biểu thức
A = x+ 2017 / x+ 2
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
Tìm giá trị lớn nhất của biểu thức: M= 2017 - /x+2/
Có : |x+2| >=0 => M =2017-|x+2| < = 2017-0 = 2017
Dấu "=" xảy ra <=> x+2=0 <=> x=-2
Vậy GTLN của M = 2017 <=> x=-2
k mk nha
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Tìm giá trị lớn nhất của các biểu thức:
a, 1/2x^2+3
b, 2017/(2-x)^2+1