Tìm Min của biểu thức sau .
A=\(y^2+5+2y\)
B\(x^2+4y-3\)
C=\(9x^2+6x+5\)
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm mẫu thức chung của các phân thức sau.
a , 25/ 14x^2y và 14/ 21xy^5
b , 1/10x^4y ; 5/ 8 x^2y^2z và 2/ 3xy^5
c , 3x + 1 /12xy^4z và y-2/9x^2 -y^3
d , 5/ 3x^3 - 12x và 3/ (2x+ 4)(x+3)
e, 7x - 1/2x^2 + 6x và 5-3x / x^2 -9
f, 1/ x^3 -1 ; 2/x^2+x+1 và 3/x-1
Quy đồng mẫu thức các phân thức sau :
a)
tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)
Question Expandand simplify: 1. 8(x+5)-3(2x+7)
2. a(2b+c)+b(3c-2a)
3. 2y(y+5x)+x(3x+4y)
answer , 1. 8(x+5)-3(2x+7)=8x+40-6x+21=2x+61
2. a(2b+c)+b(3c-2a)=2ab+ac+3bc-2ab=ac+3bc=3abc^(2)
3. 2y(y+5x)+x(3x+4y)=2y^(2)+10xy+9x^(2)+4xy=9x^(2)+2y^(2)+14xy
a Explain what he has done wrong.
b work out the correct answer
Tìm min của các biểu thức sau:
A=3x^2 - 6x - 1
B=x^2 - 2x + y^2 - 4y + 2016
C=(x-1).(x+2).(x+3).(x+6)
LÀM dùm bn 1 câu khó nhất nhé;
B = (x-1)2 + ( y -2)2 +2016 -1 -4
GTNN B = 2011
A=3(x^2-2x-1/3)
=3(x-1)^2 -4/3
ta có (x-1)^2 >= 0
suy ra a>= 0-4/3
dấu bằng xảy ra khi x-1=0
x=1
vậy giá trị nhỏ nhất của A là -4/3 khi x=1
B=(x-1)^2 +(y-2)^2 +2016-(4+1)
ta có (x-1)^2 lớn hơn hoặc bằng 0
(y-2)^2 lớn hơn hoặc bằng 0
suy ra B lớn hơn howcj bằng 0+0+2011
đấu bằng xảy ra khi x-1=0 suy ra x=1
y-2 =0 suy ra x=2
vậy GTNN của B là 2011 khi x=1;y=2
Viết các biểu thức sau dưới dạng tổng của hai bình phương:
5)-12x+13-24y+9x^2+16y^2
6)a^2-4ab+5b^2-4bc+4c^2
7)5x^2+y^2+z^2+4xy-2xz
8)9x^2+25-12xy+2y^2-10y
9)13x^2+4x-12xy+4y^2+1
10)x^2+4y^2+4x-4y+5
11)4x^2-12x+y^2-4y+13
12)x^2+y^2+2y-6x+10
13)4x^2+9y^2-4x+6y+2
14)y^2+2y+5-12x+9x^2
15)x^2+26+6y+9y^2-10x
16)10-6x+12y+9x^2+4y^2
17)16x^2+5+8x-4y+y^2
18)x^2+9y^2+6x-12y
19)5+9x^2+9y^2+6y-12
20)x^2+20+9y^2+8x-12y
21)x^2+4y+4y^2+26-10x
22)4y^2+34-10x+12y+x^2
23)-10x+y^2-8y+x^2+41
24)x^2+9y^2-12y+29-10x5
25)9x^2+4y^2+4y-12x+5
26)4y^2-12x+12y+9x^2+13
27)4x^2+25-12x-8y+y^2
28)x^2+17+4y^2+8x+4y
29)4y^2+12y=25+8x+x^2
30)x^2+20+9y^2+8x-12y
MONG CAC BAN GIUP MINH VOI ,MINH CAN GAP ,CAM ON NHIEU
a)(-6x^3y^4+4x^4y^3):2x^3y^3. b)(5x^4y^2-x^3y^2):x^3y^2. c)(27x^3y^5+9x^2y^4-6x^3y^3):(-3x^2y^3)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
Bài 1
a)Chứng minh biểu thức sau có giá trị không phụ thuộc vào các biến :
M=(2+x)(8-x)+4x(2x+y2)-4(1+xy2)-7x2-6x
b)Chứng minh rằng : (a+b)(b+c)(c+a)+4abc=c(a+b)2+a(b+c)2+b(a+c)2
Bài 2
A=9x2-6xy-2y+2y2+5 . Với giá trị x,y nào thì A đạt giá trị nhỏ nhất (MIN A) ?
Tìm MIN A ?
BT8: Tính giá trị của các biểu thức sau:
\(3,C=x^2-8xy+16y^2\)tại \(x-4y=5\)
\(4,D=9x^2+1620-12xy+4y^2\)tại \(3x-2y=20\)
3, \(C=x^2-8xy+16y^2\)
\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)
\(C=\left(x-4y\right)^2\)
Thay \(x-4y=5\) vào C ta được:
\(C=5^2=25\)
Vậy: ......
4, \(D=9x^2+1620-12xy+4y^2\)
\(D=\left(9x^2-12xy+4y^2\right)+1620\)
\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)
\(D=\left(3x-2y\right)^2+1620\)
Thay \(3x-2y=20\) vào D ta được:
\(D=20^2+1620=400+1620=2020\)
Vậy: ...
3/
\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)
Thay x - 4y = 5 ta có: \(C=5^2=25\)
4/
\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)
Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)