Chứng minh biểu thức luôn âm với mọi x,y
8 -x^2 -y^2 -4x +10y
chứng minh biểu thức sau không âm với mọi x,y: 5x^2 + 10y^2 - 6xy - 4x - 2y +v9
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2x+1\right)+8\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+8>0\forall x;y\) (do \(\left(x-3y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(y-1\right)^2\ge0\forall x;y\)
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
chứng minh rằng biểu thức
a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
a.x2+ 2x+ 3
=x2+ 2.x.1+ 12- 12+ 3
= (x+1)2 -1+3
= (x+1)2+ 2
Ta có: (x+1)2 ≥0
(x+1)2+ 3≥ 3>0
⇒x2+ 2x+ 3>0 mọi x
Vậy x2+ 2x+3>0 mọi x
b. -x2+ 4x- 5
= - (x2- 4x +5)
= - (x2- 2.x.2+ 22- 22+ 5)
= - ((x- 2)2- 4+ 5)
= - ((x- 2)2+1)
= -(x- 2)2 -1
Ta có: (x-2)2 ≥0
- (x-2)2 ≤0
- (x-2)2 +1≤ 1
⇒ -x2+ 4x- 5 <0 mọi x
Vậy -x2+ 4x- 5 <0 mọi x
Chứng minh biểu thức C=-x^2-4x-5 luôn âm với mọi x
cho biểu thức A = -x2 + 4x - 6 - y2 - 2y
Chứng minh rằng biểu thức A luôn có giá trị âm với mọi x,y
Ta có A = -x2 + 4x - 6 - y2 - 2y
= -(x2 - 4x + 4) - (y2 + 2y + 1) - 1
= -(x - 2)2 - (y + 1)2 - 1 \(\le-1< 0\)
=> A < 0 với mọi x ; y
A = -x2 + 4x - 6 - y2 - 2y
= -( x2 - 4x + 4 ) - ( y2 + 2y + 1 ) - 1
= -( x - 2 )2 - ( y - 1 )2 - 1 ≤ -1 < 0 ∀ x, y
=> đpcm
\(A=-x^2+4x-6-y^2-2y\)
\(=-x^2+4x-4-y^2-2y-1-1\)
\(=-\left(x^2-4x+4\right)-\left(y^2+2y+1\right)-1\)
\(=-\left(x-2\right)^2-\left(y+1\right)^2-1\)
\(=-\left[\left(x-2\right)^2+\left(y+1\right)^2+1\right]\)
mà \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+1>0\)
\(\Rightarrow-\left[\left(x-2\right)^2+\left(y+1\right)^2+1\right]< 0\)
\(\Rightarrow A< 0\)
Vậy A luôn có giá trị âm với mọi x,y
Chứng minh:
a, Biểu thức \(4x^2-4x+3\)luôn dương với mọi \(x\)
b,Biểu thức \(y-y^2-1\) luôn âm với mọi \(y\)
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
4x2 - 4x + 3
= 4x2 - 4x + 1 + 2
= 4 ( x -\(\frac{1}{2}\))2 + 2\(\ge2\)
=> Đpcm
y - y2 - 1
= - y2 + y -\(\frac{1}{4}-\frac{3}{4}\)
= - ( y -\(\frac{1}{2}\))2 -\(\frac{3}{4}\le-\frac{3}{4}\)
=> Đpcm
Chứng minh giá trị của biểu thức A= 4x^2 - 3x + 1/4x luôn nhận giá trị không âm với mọi x>0
Chứng minh rằng :
A=x2+10y2+2xy-6y+5 luôn dương với mọi x,y
B=x-x2-1 luôn âm với mọi x
Mọi ng giúp mình với
\(A=x^2+10y^2+2xy-6y+5\)
\(A=x^2+2xy+y^2+9y^2-6y+1+4\)
\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)
=> A luôn dương với mọi x ; y
\(B=x-x^2-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)
=> B luôn âm với mọi x
cho biểu thức A = ( x - 3 ) ( x2 + 3x + 9 ) - ( x - 1 )3 + 4 ( x + 2 ) ( 2 - x ) - x
a. Chứng minh A = - x2 - 4x - 10
b. Chứng minh A luôn có giá trị âm với mọi giá trị của số thực x
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)