rút gọn biểu thức
(4x+1)^2+(4x-1)^-2(4x+1)(4x-1)
a) Rút gọn các biểu thức:
i i ) 4 x + 1 2 + 4 x – 1 2 – 2 ( 4 x + 1 ) ( 4 x – 1 )
ii) (4x + 1)2 + (4x – 1)2 – 2(4x + 1)(4x – 1)
= [(4x + 1) - (4x - 1)]2
= (4x + 1 - 4x + 1)2
= 22 = 4
Rút gọn biểu thức: \(\sqrt{4x-2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}\) khi \(x\ge\dfrac{1}{4}\)
\(=\sqrt{4x-1-2\sqrt{4x-1}+1}+\sqrt{4x-1+2\sqrt{4x-1}+1}\)
\(=\sqrt{\left(\sqrt{4x-1}-1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}\)
\(=\left|\sqrt{4x-1}-1\right|+\sqrt{4x-1}+1\)
\(=\left[{}\begin{matrix}2\sqrt{4x-1}\text{ nếu }x\ge\dfrac{1}{2}\\2\text{ nếu }\dfrac{1}{4}\le x< \dfrac{1}{2}\end{matrix}\right.\)
1 Rút gọn biểu thức
(4x+1)^2+(4x-1)^2-2(4x+1)(4x-1)
2 Phân tích đa thức thành nhân tử
4x^2-9+(2x+3)
1) ( 4x + 1 )2 + ( 4x - 1 )2 - 2( 4x + 1 ).( 4x - 1 )
= ( 4x + 1 - 4x - 1 )2
= 22
= 4
2) 4x2 - 9 + ( 2x + 3 )
= ( 2x )2 - 32 + ( 2x + 3 )
= ( 2x + 3 ).( 2x - 3 ) + ( 2x + 3 )
= ( 2x + 3 ). ( 2x - 3 + 1 )
= ( 2x + 3 ) .( 2x - 2 )
= 2.( 2x + 3 ) .( x - 1 )
1, (4x+1)^2 + (4x-1)^2 - 2(4x+1)(4x-1)
=[(4x+1)-(4x-1)]^2
=(4x+1-4x+1)^2
=2^2
=4
2, 4x^2 - 9 +(2x+3)
=(4x^2 - 9)+(2x+3)
=(2x+3)(2x-3)+(2x+3)
=(2x+3)(2x-3+1)
=(2x+3)(2x-2)
=2(x-1)(2x+3)
=.= hok tốt!!
kết quả rút gọn của biểu thức (4x+1)^2-(4x-2).(4x+2)
Bài làm:
(4x+1)2-(4x-2).(4x+2)
=16x2+8x+1-16x2+4
=8x +5
rút gọn biểu thức 2(2x 5)^2-3(4x 1)(1-4x)
Rút gọn các biểu thức sau:
a) ((1/x^2+4x+4)-(1/x^2-4x+4)):((1/x+2)+(1/x^2-2))
b)((2x/2x-y)-(4x^2/4x^2+4xy+y^2)):((2x/4x^2-y^2)+(1/y-2x))
a,sửa đề : \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)
\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)
b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)
bài 1 rút gọn biểu thức
(x-2)^2-(x-3^2)
bài 2
cho phân thưc p =1-4x^2/4x^2-4x+1
a) rút gọn phân thức
b) tính giá trị của phân thức tại x=-4
Bài 1 :
\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)
\(=x^2-4x+4-x+9=x^2-5x+13\)
Bài 2 :
a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)
\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)
b, Thay x = -4 ta được :
\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)
Rút gọn biểu thức: A=(2x+3) (4x^2-6x+9) - 2(4x^2-1)
\(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^2-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^2+2\)
\(=8x^3-8x^2+29\)
ta có
\(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^2-1\right)\)
\(A=8x^3-12x^2+18x+12x^2-18x+27-8x^2+2\)
\(A=8x^3-8x^2+29\)
Trả lời:
A = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x2 - 1 )
= 8x3 - 12x2 + 18x + 12x2 - 18x + 27 - 8x2 + 2
= 8x3 - 8x2 + 29
Cho biểu thức .
\(P=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)
Rút gọn
\(P=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{4x^2-x^4+1-4x^2}{1-4x^2}\)
\(=\frac{3x^3+3x}{1-4x^2}:\frac{1-x^4}{1-4x^2}\)
\(=\frac{3x\left(x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}\)
\(=\frac{3x}{1-x^2}\)