Cho a.b.c=1
CMR: (1/1+ab+a) +(1/bc+b+a)+(1/abc+bc+b)=1
Cho ba số a,b,c thỏa mãn a×b×c=1CMR 1/ab+a+1 + 1/bc+b+1 + 1/abc+bc+b =1
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\)
\(A=\frac{c}{abc+ac+c}+\frac{ac}{abc\cdot c+abc+ac}+\frac{1}{ac+c+1}\)
\(A=\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
Cho a.b.c=1 C/M: A= 1/ab+a+1 + b/bc+b+1 + 1/abc+ bc+b = 1
\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{1.a}{a.\left(1+bc+b\right)}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{a}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Lời giải:
Dựa vào điều kiện $abc=1$ ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)
Ta có đpcm.
Ta có: \(a.b.c=1\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)
\(=\frac{1+ab+a}{1+ab+a}\)
\(=1.\)
\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)
Chúc bạn học tốt!
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Cho 3 số a;b;c thỏa mãn a.b.c=1.CMR :\(\dfrac{1}{ab+a+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{abc+bc+b}=1\)
Ta có :
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)
\(A=\dfrac{a+ab+1}{ab+a+1}\)
\(\Rightarrow A=1\left(đpcm\right)\)
cho 3 số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Cho 3 số tự nhiên a.b.c=1.Chứng minh rằng:
(1/ab+a+1)+(b/bc+b+1)+(1/abc+bc+1)
help me huhu
cho 3 số a,b,c thõa mãn : a.b.c=1
C/M : \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=1\)1
Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc
1/abc+bc+b = 1/1+bc+b
=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1
=> ĐPCM
k mk nha
Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc
1/abc+bc+b = 1/1+bc+b
=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1
=> ĐPCM