Cmr biểu thức n(n+5)-(n-3).(n+2) luôn luôn chia hết cho 6với mọi n là số nguyên
chứng minh biểu thức
n x (2n-3)-2nx(n+1) luôn chia hết cho 5 với mọi n là số nguyên
(n-1)x(3-2n)-nx(n+5) luôn chia hết cho 3 với mọi số nguyên
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
Chứng minh biểu thức : n(n+5)-(n-3)(n+2) luôn chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+n+6\)
\(=6n+6=6\left(n+1\right)⋮6\forall n\in Z\)
Chứng minh rằng biểu thức n(n+5)-(n-3)(n+2)luôn chia hết cho 6 với mọi n là số nguyên
Ta có : n(n+5) - (n-3)(n+2) = n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n+1) \(⋮\) 6 với mọi n
Vậy n(n+5) - (n-3)(n+2) chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+3n+2n+6\)
\(=\left(n^2-n^2\right)-\left(5n-3n-2n\right)+6\)
\(=6⋮6\) (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2-2n+3n-6\\ =6n-6=6\left(n-6\right)⋮6\)
=>đpcm
CMR với mọi số nguyên n biểu thức ( n-1}(n+ } - (n-4}(n+1 } luôn chia hết cho 6
CMR Biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi n là số nguyên
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
chứng minh rằng biểu thức n*(n+5)-(n-3)*(n+2) luôn chia hết cho 6 với mọi n số nguyên
VT = x^2 + 5x - ( x^2 - x -6)
= x^2 + 5x - x^2 + x +6
= 6x +6 = 6.(x+1) chia hết cho 6 với mọi n là số nguyên
Ta có n(n+5)-(n-3)(n+2)=n²+5n-(n²-3n+2n-6)
=n²+5n-n²+3n-2n+6
=6n+6
Tổng trên có hai hạng tử mà mỗi hạng tử đều chia hết cho 6 nên tổng chia hết cho 6
Vậy n(n+5)-(n-3)(n+2) luôn luôn chia hết cho 6 với mọi n là số nguyên
Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m
CMR: với mọi số nguyên n thì giá trị biểu thức \(n^3+12n^2-n+6\) luôn chia hết cho 6.
Chứng minh rằng biểu thức n(2n – 3) – 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n.
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .