\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)\)
Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\)\(\forall n\in Z\).
thay các số bắt đầu từ 1 vào r tính sau cứ như thế vd lấy 1 số cao như 1000 chẳng hạn
C2 ta có n( n+5)-(n-3)(n+2)
=n² +5n-(n² -3n+2n-6)
=n²+5n-n²+3n-2n+6
=6n+6
Tổng trên có hai hạng tử mà mỗi hạng tử đều chia hết cho 6 nên tổng chia hết cho 6
Vậy n(n+5)-(n-3)(n+2) luôn luôn chia hết cho 6 với mọi n là số nguyên