Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen pokiwar bin
Xem chi tiết
Thượng Hoàng Yến
Xem chi tiết
Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:34

......................?

mik ko biết

mong bn thông cảm 

nha ................

Nguyễn Thị Hồng Hạnh
24 tháng 6 2018 lúc 12:53

a) x2+2y2+2xy-2y+1=0

\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0

\(\Leftrightarrow\)(x+y)2+(y-1)2=0

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy x=-1, y=1

Huy Hoàng
24 tháng 6 2018 lúc 13:31

a/ \(x^2+2y^2+2xy-2y+1=0\)

<=> \(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

<=> \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

b/ \(x^2+2y^2+2xy-2x+2=0\)

<=> \(\left(x^2+2xy+y^2\right)+\left(2y-2x+2\right)=0\)

<=> \(\left(x+y\right)^2+2\left(y-x+1\right)=0\)

<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-x+1\right)=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-x=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\left(1\right)\\x-y=1\left(2\right)\end{cases}}\)

Trừ (1) và (2)

=> \(2y=-1\)

<=> \(y=-\frac{1}{2}\)

<=> \(x=\frac{1}{2}\)(vì \(x+y=0\)<=> \(x=-y\))

thanh thao
Xem chi tiết
lê quý dương
Xem chi tiết
Giap van Khoi
Xem chi tiết
Nguyễn Văn Anh Kiệt
4 tháng 8 2017 lúc 14:52

a)\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y-1=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=-y=-1\end{cases}}\)

Vậy x=-1 y=1

Trần Anh
4 tháng 8 2017 lúc 14:58

a)  \(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=1\end{cases}\Rightarrow}x=-1;y=1}\)

b) \(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)

\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow2.\left(x-1\right)^2+3.\left(x+y\right)^2+\left(z+2\right)^2=0\)

\(\Rightarrow\)  \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

           \(\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow y=-x=-1\) 

            \(\left(z+2\right)^2=0\Rightarrow z+2=0\Rightarrow z=-2\)

leduccuong
Xem chi tiết
Stellaris Đình Tân
Xem chi tiết
Nguyễn Ngọc Quân
12 tháng 11 2017 lúc 20:34

viết sai đề hết rồi

Khanh
26 tháng 8 2021 lúc 21:42

Phân tích đa thức sau thành nhân tử

 

Vũ Thị Thu Hằng
Xem chi tiết
Kien Nguyen
18 tháng 12 2017 lúc 14:01

Phân thức đại sốPhân thức đại số

Lê Hào 7A4
Xem chi tiết
Shinichi Kudo
16 tháng 6 2023 lúc 20:51

loading...  

Shinichi Kudo
16 tháng 6 2023 lúc 21:06

loading...