Chứng minh rằng :
a, \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
b, \(\frac{1}{n\left(n+q\right)}=\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)\)
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..............+\frac{1}{2015.2016.2017}\)
Ta có \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) (đpcm)
Áp dụng công thức trên ta có
A\(=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot\cdot\cdot\cdot\cdot+\frac{1}{2015\cdot2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2015\cdot2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{2}{3\cdot4}+....+\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\)
\(\Rightarrow A=\left(\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\right)\div2\approx0.25\)
Vậy A\(\approx0.25\)
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.............+\frac{1}{2015.2016.2017}\)
Với mọi số tự nhiên n > 2 . Chứng minh rằng \(\frac{1}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{2}\left[\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\right]\)
\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Ta có đpcm.
Chứng minh rằng với mọi n \(\inℕ^∗\):
D = \(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}< 1\)
F = \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
Chứng minh :
a) \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
A=\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left[1+\frac{1}{n+\left(n+2\right)}\right]< 2\)
Chứng minh rằng với mọi số tự nhiên n\(\ge\)1
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
Chứng minh rằng : \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Xét vế phải: \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
= \(\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)
= \(\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)
= \(\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
= VT
=> Đpcm
a, chứng minh:
\(n^4+\frac{1}{4}=\left[\left(n-1\right)n+\frac{1}{2}\right].\left[\left(n+1\right)n+\frac{1}{2}\right]\)
b, Áp dụng câu a) thu gọn:
\(\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right)...\left(13^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(14^4+\frac{1}{4}\right)}\)