Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 12:21

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 12:26

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

Tiên Hồ Đỗ Thị Cẩm
2 tháng 7 2019 lúc 12:43

 Linh ơi, câu a,b,c bạn làm đều đúng hết kết quả cách làm đều đúng nhưng mà ở chỗ câu c): \(\sqrt{x}^3+\sqrt{y}^3\)

không phải vậy đâu, mặc dù mình biết bạn hiểu, hay do sơ suất, nhưng mà chỗ đó là \(\sqrt{x^3}+\sqrt{y^3}\)nha! Dù sao cũng cảm ơn bạn nha!

Đinh Thị Thùy Trang
Xem chi tiết
Nguyễn Linh Chi
28 tháng 2 2020 lúc 13:46

Với đk trên ta có:

P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)

\(=\frac{2}{x}+\frac{x-y}{xy}\)

\(=\frac{x+y}{xy}\)

Khách vãng lai đã xóa
Hỏa Long Sabo
Xem chi tiết
Thắng Nguyễn
17 tháng 6 2018 lúc 22:34

pt cái trong căn kia trc thành tổng b.phương

Minh Triều
Xem chi tiết
Trần Thị Loan
17 tháng 10 2015 lúc 11:06

Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)

Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)

\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)

Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

nguyễn minh hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 13:19

\(=\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{x+y}{\sqrt{xy}}\right)\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x^2-y^2\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}\)

\(=\dfrac{\sqrt{xy}\left(x+y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}=-\sqrt{x}+\sqrt{y}\)(1)

Khi x=3 và \(y=4+2\sqrt{3}\) vào (1), ta được:

\(=-\sqrt{3}+\sqrt{4+2\sqrt{3}}=-\sqrt{3}+\sqrt{3}+1=1\)

Linh Nguyen
Xem chi tiết
Phan Văn Hiếu
15 tháng 8 2017 lúc 20:38

a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)

\(=3\sqrt{xy}\)

b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)

Nguyễn Quốc Gia Huy
15 tháng 8 2017 lúc 20:44

a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)

Duyên Nguyễn
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
23 tháng 8 2023 lúc 22:51

\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)

\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)