Cho tam giác MNP vuông tại M, đường cao MH. Chứng minh rằng: tam giac MHN dong dang voi PHM.
Cho tam giác MNP vuông tại M, MN = 6cm , MP = , đường cao MH.
1) (2đ) Chứng minh tg PHM đồng dạng với PMN và 2 PH.PN=PM^2
2) (2đ) Chứng minh tg PHM đồng dạng với tg MHN và HN.HP=HM^2
Cho tam giác MNP vuông tại M, MN = 6cm , MP = 8cm , đường cao MH.
1) (2đ) Chứng minh tg PHM đồng dạng với PMN và 2 PH.PN=PM^2
2) (2đ) Chứng minh tg PHM đồng dạng với tg MHN và HN.HP=HM^2
Cho tam giác MNP vuông tại M, MN = 6cm , MP = , đường cao MH.
1) (2đ) Chứng minh tg PHM đồng dạng với PMN và 2 PH.PN=PM^2
2) (2đ) Chứng minh tg PHM đồng dạng với tg MHN và HN.HP=HM^2
cho tam giác abc vuông tại a đường cao ah a chung minh :tam giac abe dong dang voi tam giac acb b) chung minh ae.df=af.de
Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP
a ) Chứng minh : Tam giác MHN = Tam giác MHP
b ) Chứng minh MH là phân giác của tam giác MNP
c ) Tính MH nếu MN = 10 cm , NP = 12 cm
d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)
cho tam giác MNP vuông tại M có MN=12cm;MP=16cm.kẻ đường cao MH a)chứng minh MHN đồng dạng PMN
b)vẽ đường phân giác MD; tính ND,PD
giải giúp em với ạ em cần gấp
a) Xét 2 tam giac vuong MHN và MPN, ta có:
\(\widehat{HMN}=\widehat{MPN}\) (cùng phụ với góc HMP)
=> \(\Delta HMN\sim\Delta MPN\left(g.g\right)\)
b) Áp dụng định lí pitago ta tính dc NP = 20 (cm)
Áp dụng tính chất đường phân giác trong tam giác MNP ta có:
\(\dfrac{DN}{DP}=\dfrac{MN}{MP}=\dfrac{12}{16}=\dfrac{3}{4}\) <=> \(\dfrac{DN}{3}=\dfrac{DP}{4}=\dfrac{DN+DP}{3+4}=\dfrac{20}{7}\)
=> DN = 60/7 (cm) và DP = 20/7 (cm)
cho tam giác mnp vuông tại m đường cao mh
a, c/m tam giac hnm đồng dang mnp
b, mh2 =nh.ph
c, lấy e thuộc mp f thuộc mn sao cho fhe=90 độ ef cắt mh tại i c/m tam giác nfh đồ0ng dang meh và góc fmi=feh
a) Xét tam giác HMN và tam giác MNP:
Góc B chung.
Góc MHN = Góc NMP (cùng = 90o).
=> Tam giác HMN \(\sim\) Tam giác MNP (g - g).
b) Xét tam giác MNP vuông tại M, MH là đường cao:
=> MH2 = NH . PH (Hệ thức lượng trong tam giác vuông).
c) Xét tam giác NFH và tam giác MEH:
Góc FNH = Góc EMH (cùng phụ với góc MPN).
Góc NHF = Góc MHE (cùng phụ với góc MHF).
=> Tam giác NFH \(\sim\) Tam giác MEH (g - g).
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH^2=NH\cdot PH\)
cho tam giác MNP cân tại M . kẻ MH vuông góc với NP tại H.
a) Chứng minh rằng tam giác MHN và tam giác MHP bằng nhau
b) chứng minh rằng HN=HP
c) kẻ HA vuông góc MN tại A kẻ HB vuông góc với MP tại P
chứng minh rằng NA=PB