giai phuong trinh : \(\frac{1}{1+x}+\frac{1}{1+\sqrt{x}}=\frac{2+\sqrt{x}}{2x}\)
giai phuong trinh \(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
ĐKXĐ: \(x\ge\frac{1}{2}\)
Đề \(\Rightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}+8-2x^2-\left(\sqrt{2x-1}-\sqrt{3}\right)=0\)
Nhân liên hợp ta được:
\(\frac{\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{\left(\sqrt{2x-1}-\sqrt{3}\right)\left(\sqrt{2x+1}+\sqrt{3}\right)}{\sqrt{2x+1}+\sqrt{3}}=0\)
\(\Rightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{2x-1-3}{\sqrt{2x+1}+\sqrt{3}}=0\)
\(\Rightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(2-x\right)\left(2+x\right)-\frac{2x-4}{\sqrt{2x+1}+\sqrt{3}}=0\)
\(\Rightarrow\left(x-2\right)\left[\frac{-2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}\right]=0\)
mà \(-\frac{2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}< 0\)
=> x - 2 = 0 => x = 2
Vậy x = 2
giai phuong trinh
\(\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}=1\)
\(DK:x\ge0\)
\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)
\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)
\(\Leftrightarrow x=1\)
Vay nghiem cua PT la \(x=1\)
2.giai phuong trinh sau:
a.\(\sqrt{\frac{2x-3}{x-1}}=2\)
b.\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
Đkiện: x <1 hoặc x \(\ge\frac{3}{2}\)
\(\sqrt{\frac{2x-3}{x-1}}=2\) (1)
(1) => \(\frac{2x-3}{x-1}=4\)
=> 2x - 3 = 4x - 4
<=> 2x - 4x = -4 + 3
<=> -2x = -1
<=> x = \(\frac{1}{2}\)( TMĐK)
Vậy x = \(\frac{1}{2}\)
b, Đkiện: x \(\ge\frac{3}{2}\)
(1) => \(\sqrt{2x-3}=2\sqrt{x-1}\)
=>2x - 3 = 4(x - 1)
<=> 2x -3 = 4x -4
<=> -2x = -1
<=> x = \(\frac{1}{2}\)(ko TMĐK)
Vậy pt vô nghiệm
b. \(x>0;x\ne1\)
\(\Rightarrow\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\Rightarrow2x-3=4x-4\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Giair phuong trinh
\(\sqrt{x^2-\frac{1}{4}-\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\sqrt{x^2-\frac{1}{4}-\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\) (ĐK: \(x\ge\frac{-1}{2}\) )
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2x\left(x^2+1\right)+\left(x^2+1\right)\right]\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-x-\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow2x+1=\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+1\right)-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2+1-1\right)=0\)
\(\Leftrightarrow x^2\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=0\end{cases}}\) (nhận)
Vậy .....
\(\sqrt{x^2-\frac{1}{4}-\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[x^2\left(2x+1\right)+2x+1\right]\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)(1)
Vì VT > 0 nên VP >0
\(\Leftrightarrow\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\ge0\)
\(\Leftrightarrow x\ge-\frac{1}{2}\)
Khi đó \(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}-x-\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{x^2-x-\frac{3}{4}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow x^2-x-\frac{3}{4}=\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+1\right)-\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3-\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x-3=\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)\end{cases}}\)
Cần cù bù thông minh , phá tung pt dưới ra được cái phương trình bậc 5, sau đó dùng Wolfram|Alpha: Computational Intelligence để tính nghiệm rồi phân tích nhân tử =))
giai phuong trinh
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
Điều kiện: \(x\ge\frac{1}{3}\)
Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)
\(\Rightarrow x=a^2+\frac{1}{3}\)
Ta suy ra phương trình tương đương với
\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)
\(\Leftrightarrow54a^4+30a^2+27a-13=0\)
\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)
Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)
\(\Rightarrow3a-1=0\)
\(\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)
\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{4}{9}\)
giai phuong trinh sau:
\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}=2\)
m.m giup minh cau nay aj. thank m.n
GIAI PHUONG TRINH:
\(2\left(\sqrt{\frac{x-1}{4}-3}\right)=2\sqrt{\frac{4x-4}{9}}-\frac{1}{3}\)
giai phuong trinh \(\sqrt{x^2+2x}-x-1+\frac{2\left(x-1\right)}{\sqrt{x^2+2x}}=0\) (Nguyễn Du BMT 2017 -2018)
ĐK: \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)
\(pt\Leftrightarrow\left(x^2+2x\right)-\left(x+1\right)\sqrt{x^2+2x}+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(x+1\right)\sqrt{x^2+2x}+2\left(x+1\right)-4=0\)
Đặt \(\sqrt{x^2+2x}=A;x+1=B\left(A>0\right)\), phương trình trở thành:
\(A^2-AB+2B-4=0\)
\(\Leftrightarrow\left(A^2-4\right)+B\left(2-A\right)=0\)
\(\Leftrightarrow\left(A-2\right)\left(A+2-B\right)=0\Leftrightarrow\orbr{\begin{cases}A-2=0\\A-B+2=0\end{cases}}\)
Trở về phương trình đầu, ta có:
TH1: \(A=2\Rightarrow\sqrt{x^2+2x}=2\Rightarrow x^2+2x=4\Rightarrow\orbr{\begin{cases}x=\sqrt{5}-1\left(n\right)\\x=-\sqrt{5}-1\left(n\right)\end{cases}}\)
TH2: \(\sqrt{x^2+2x}-\left(x+1\right)=-2\Leftrightarrow\sqrt{x^2+2x}=x-1\)
ĐK: x > 1
\(pt\Rightarrow x^2+2x=x^2-2x+1\Rightarrow x=\frac{1}{4}\left(l\right)\)
KL: PT có nghiệm \(x=-\sqrt{5}-1\) và \(x=\sqrt{5}-1\)
Giai phuong trinh:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(DKXD:x>0\)
\(PT\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x-4+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{x^2-4x+3}{2\left(x+1\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(\frac{1}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{1}{2\left(x+1\right)}\right)=0\)
\(\Rightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x\sqrt{x+\frac{3}{x}}=2\text{ }\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\left(\text{ }x-1\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy PT có 2 nghiệm \(x=1;x=3\)