Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lina Nguyễn
Xem chi tiết
Ninh Thế Mạnh
Xem chi tiết
Nguyễn Thư
Xem chi tiết
Nobita Kun
28 tháng 12 2015 lúc 21:50

M = 292n - 140n - 1

= (292)n - 140n - 1

= ...1n - ...0 - 1

= ....1 - ....0 - ....1

= ....1 - 1

= ....0

Vậy

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Linh Chi
30 tháng 4 2020 lúc 17:38

\(7^{n+1}+16.7^n+6^{2n+1}⋮29\)(1)

Ta có: \(7^{n+1}+16.7^n+6^{2n+1}\)

\(=6.6^{2n}-6.7^n+29.7^n\)

\(=6\left(36^n-7^n\right)+29.7^n⋮29\)

Vì \(36^n-7^n⋮\left(36-7\right)\)

Vậy (1) đúng với mọi số tự nhiên n.

Khách vãng lai đã xóa
What The Hell
Xem chi tiết
No name
22 tháng 4 2018 lúc 22:05

Bài 1 :

Ta có :

a chia 3 dư 1 a=3k+1⇒a=3k+1

b chia 3 dư 2 b=3k1+2⇒b=3k1+2 (k;k1N)(k;k1∈N)

ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2

Mà 3k.k1+2.3k+3.k133k.k1+2.3k+3.k1⋮3

3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2

ab⇒ab chia 3 dư 2 đpcm→đpcm

Bài 2 :

Ta có :

n(2n3)2n(n+1)n(2n−3)−2n(n+1)
=2n23n2n22n=2n2−3n−2n2−2n
=5n5=−5n⋮5

n(2n3)3n(n+1)5⇒n(2n−3)−3n(n+1)⋮5 với mọi n

đpcm

Nguyễn Đặng Linh Nhi
22 tháng 4 2018 lúc 22:06

Bài 1: 

a=3n+1 

b= 3m+2 

a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.

Bài 2: 

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 

= -5n 

-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5 

vậy n(2n-3)-2n(n+1) chia hết cho 5

Trần Đức Vinh
Xem chi tiết
Viên Tiến Duy
16 tháng 11 2023 lúc 22:30

EZ NUB BRO CRY :>

Giả sử : A=(2n+3)2-(2n-1)2

=(4n2+12n+9)-(4n2-4n+1)

=(4n2-4n2)+(12n+4n)+(9-1)

=16n+8

=8(2n+1)   ⋮ 8

Vậy A⋮8 (đpcm)

học lại hàng đẳng thức đáng nhớ đi bro :>

 

 

dream XD
Xem chi tiết
Akai Haruma
23 tháng 5 2021 lúc 20:57

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

Hồ Hữu Phong
Xem chi tiết
boi đz
13 tháng 6 2023 lúc 16:18

\(5^{60n}< 2^{140n}< 3^{100n}\)

\(5^{60n}=\left(5^3\right)^{20n}=125^{20n}\\ 2^{140n}=\left(2^7\right)^{20n}=128^{20n}\\ 3^{100n}=\left(3^5\right)^{20n}=243^{20n}\)

 Mà\(125< 128< 243\Rightarrow125^{20n}< 128^{20n}< 243^{20n}\Rightarrow5^{60n}< 2^{140n}< 3^{100n}\) 

Vậy đã CMR: \(5^{60n}< 2^{140n}< 3^{100n}\)

Nguyễn Ngọc Huyền
Xem chi tiết
Nguyễn Thị Thùy Dương
8 tháng 11 2015 lúc 21:54

Đặt A = n(n+1)(2n+1) 

+ n = 2k  => A chia hết cho 2

+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2

Vậy A luôn chia hết cho 2                (1)

+n=3k  => A chia hết cho 3

+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1)  chia hết cho 3=> A chia hết cho 3

+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3

Vậy A luôn chia hết cho 3            (2)

Từ (1);(2) =>  A chia hết cho 2.3 =6  Với mọi n thuộc N

Nobita Kun
8 tháng 11 2015 lúc 21:53

+ Nếu n chia hết cho 3 thì  n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => 2n chia 3 dư 2 => 2n + 1 chia hết cho 3 =>  n(n+1)(2n+1) chia hết cho 3 

+ Nếu n chia 3 dư 2 => n + 1 chia hết cho 3 =>  n(n+1)(2n+1) chia hết cho 3

=>  n(n+1)(2n+1) chia hết cho 3 với mọi n.     

Ta lại thấy n(n + 1) là tích 2 số liên tiếp => chia hết cho 2 =>  n(n+1)(2n+1) chia hết cho 2.

=>  n(n+1)(2n+1) chia hết cho 2 và 3 =>  n(n+1)(2n+1) chia hết cho 6 (Vì ƯCLN(2; 3) = 6)

ggbao pro
21 tháng 1 2021 lúc 15:43

I saw you

Khách vãng lai đã xóa