cho (O) đg kính AB dây AC và BD cắt nhau tại h. kẻ HK vuông góc AB chứng minh 4 điểm A,D,H,K cùng thuoc 1 đng tròn
Cho (O) đường kính AB dây AC và BD cắt nhau tại H kẻ HK vuông góc AB gọi AD cắt BC tại G CM CDHG cùng thuộc đng tròn
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD\(\perp\)AG tại D
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)GB tại C
Xét tứ giác GDHC có \(\widehat{GDH}+\widehat{GCH}=90^0+90^0=180^0\)
nên GDHC là tứ giác nội tiếp
=>G,D,H,C cùng thuộc một đường tròn
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt (O) tại F.
1. Chứng minh 4 điểm B, H, F, E cùng thuộc một đường tròn.
2. Tính theo R diện tích tam giác FEC khi H là trung điểm OA.
3. Khi K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho tam giác ABC nhọn ( AB < AC ) .Đường tròn tâm O có đường kính BC cắt AB và AC lần lượt tại E và D . Gọi H là giáo điểm của CE và BD .
a ) AH cắt BC tại F : CMR AF vuông góc với BC
b) kẻ HK ⊥ OA tại K .C/m A,D,K,E cùng thuộc 1 đường tròn
Cho đường tròn O đường kính AB. Kẻ tiếp tuyến Ax, trên Ax lấy điểm D. Kẻ dây AC vuông góc với OD tại H Chứng minh 4 điểm D , E , H , A thuộc cùng 1 đường tròn?
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
(4) cho △ABC (AB<AC). đường tròn tâm o đường kính BC cắt AB, AC lần lượt tại E và D. H là giao điểm của BD và CE.
a) c/m: AH⊥BC tại F
b) kẻ Hk⊥OA tại K. c/m: A, D, K, E cùng thuộc 1 đường tròn
c) tiếp tuyến tại B và D của (O) cắt nhau tại M. I là giao điểm của MD và AH. c/m: I là trung điểm AH
giúp mk vs ạ mai mk hc rồi
Cho đường tròn (O,R), dây BC cố định không đi qua O. Lấy điểm A. Kẻ BD vuông góc AC tại D, CE vuông góc AB tại E. Gọi giao điểm của BD và CE là H. Tia BD cắt đường tròn (O) tại điểm thứ hai là F (F khác B)
a, Chứng minh bốn điểm B,D,C,E cùng thuộc 1 đường tròn
b, chứng minh CA là tia phân giác của HCF
a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: góc ECA=góc ABF=1/2*sđ cung AF
góc FCA=1/2*sđ cung AF
=>góc ECA=góc FCA
=>CA là phân giác của góc ECF
Cho đường tròn (O;R) có đường kính AB. Từ điểm C nằm ngoài (O) kẻ cát tuyến CNM vuông góc với AB tại H (H nằm giữa O và B); AC cắt đường tròn (O;R) tại điểm K khác A, hai dây MN và BK cắt nhau ở E
a) CM: tứ giác AHEK nội tiếp đường tròn
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: tam giác NKF cân