Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
TítTồ
Xem chi tiết
TítTồ
3 tháng 7 2019 lúc 18:52

Câu 2 (Bổ Sung) : Chứng minh tam giác đã cho là tam giác đều

Mai Lê Thị
Xem chi tiết
Trần Ngọc Hân
Xem chi tiết
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:26

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

Nguyễn Thị Kim Anh
Xem chi tiết
Lê Nhật Khôi
8 tháng 10 2017 lúc 20:45

Bài làm có sử dụng các bổ đề: số chính phương chia 3 dư 0 hoặc 1. Số chính phương chia 5 dư 0, 1 hoặc 4. Số chính phương chia hết cho p (p là số nguyên tố) thì phải chia hết cho p². 
~~~~~~~~~ 
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*) 
b) - Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4. 
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N) 
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí) 
Vậy trường hợp a, b cùng lẻ không xảy ra. 
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N). 
=> a² + b² = c² 
<=> (2m + 1)² + (2n)² = (2p + 1)² 
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1 
<=> n² = p² + p - m² - m 
<=> n² = p(p + 1) - m(m + 1). 
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4. 
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4. 
Vậy abc chia hết cho 4 (**) 
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***) 
Từ (*), (**), (***), mà 3, 4, 5 đôi một nguyên tố cùng nhau => abc chia hết cho 3.4.5 hay abc chia hết cho 60 => abc chia het cho 3
~~~~~~ 
Chúc bạn học giỏi!

nguyễn bích thuỳ
Xem chi tiết
Nguyễn Thị Hồng Điệp
Xem chi tiết
Nguyễn Quỳnh Giao
14 tháng 12 2016 lúc 21:01

a. 3

b. 122/99

c.110

d.1

đ.120

e13/17

 

Như Lê
26 tháng 11 2017 lúc 19:26

a.3

b. 1,(23) = 1 + 0,(23) = 1 + 23 . 0,(01) = 1+ 23 . 1/99 = 1 + 23/99 = 122/99

c.110

Phạm Thế Anh
22 tháng 12 2017 lúc 16:33

Hỏi gì hỏi lắm

Nguyễn Việt Anh
Xem chi tiết
NGUYỄN TRỌNG TƯỜNG NAM
7 tháng 12 2023 lúc 16:29

Do (2023−�)2≥0 với mọi  nên:

3(�−3)2=16−(2023−�)2≤16<18

⇒(�−3)2<6

Mà (�−3)2≥0 và (�−3)2 là số chính phương với mọi  nguyên.

⇒(�−3)2=0 hoặc (�−3)2=4

Nếu (�−3)2=0 thì �=3.

Khi đó: (2023−�)2=16−3.02=16

⇒2023−�=4 hoặc 2023−�=−4

⇒�=2019 hoặc �=2027

Nếu (�−3)2=4⇒�−3=2 hoặc �−3=−2

⇒�=5 hoặc �=1
Khi đó:

(2023−�)2=16−3.4=4=22=(−2)2
⇒2023−�=2 hoặc 2023−�=−2

⇒�=2021 hoặc