y=(m-1)x+m+3
tìm điểm cố định mà ĐTHS luôn đi qua với mọi m
cho hàm sô y=(2m+1)x -m+3
a,tìm m để ĐTHS đi qua A(-2;3)
b,tìm điểm cố định mà ĐTHS luôn đi qua với mọi m
Cho hàm số y= (2-m)x+m-1 (với m là tham số) (1)
Tìm điểm cố định mà đths (1) luôn đi qua với mọi giá trị của tham số m
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
Tìm điểm cố định mà đường thẳng y = (2m + 3)x - m + 1 luôn đi qua với mọi m
Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:
\(y_0=\left(2m+3\right)x_0-m+1\)
\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)
Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)
tìm điểm cố định mà đường thẳng y=(m+2).x+(m-3).y-m+8 luôn đi qua với mọi m
Lời giải:
$y=(m+1)x+(m-3)y-m+8, \forall m\in\mathbb{R}$
$\Leftrightarrow y=m(x-3y-1)+(x-3y+8), \forall m\in\mathbb{R}$
$\Leftrightarrow m(x-3y-1)+(x-4y+8)=0, \forall m\in\mathbb{R}$
\(\Leftrightarrow \left\{\begin{matrix} x-3y-1=0\\ x-4y+8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=28\\ y=9\end{matrix}\right.\)
Vậy đt luôn đi qua điểm cố định $(28,9)$
chứng minh rằng
a) Họ đường thẳng k(x+3)-7-y=0 luôn đi qua điểm cố định với mọi k
b) Họ đường thẳng (m+2)x+(m-3)y-m+8=0 luôn đi qua điểm cố định với mọi m
c) Họ đường thẳng y=(2-k)x+k-5 luôn đi qua điểm cố định với mọi k
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)
Cho đường thẳng d : y = (m + 1) x – m + 2 (m là tham số) a. Tìm điểm I là điểm cố định mà d luôn đi qua với mọi m.
Giả sử đường thẳng d luôn đi qua điểm cố định \(I\left(x_0;y_0\right)\) \(\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0-m+2\)
\(\Leftrightarrow m\left(x_0-1\right)+x_0-y_0+2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\x_0-y_0+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\)
Vậy \(I\left(1;3\right)\)
tìm các điểm cố định mà đths luôn đi qua với mọi m
y= (m-1)x+m+2 tất cả phần x+m+2
ta có : \(y=\dfrac{\left(m-1\right)x+m+2}{x+m+2}\Leftrightarrow\dfrac{\left(m-1\right)x+m+2}{x+m+2}-y=0\)
\(\Leftrightarrow\dfrac{\left(m-1\right)x+m+2-yx-ym-2y}{x+m+2}=0\)
\(\Leftrightarrow mx-x+m+2-yx-ym-2y=0\)\(\)\(\Leftrightarrow\left(-x+2-yx-2y\right)+\left(x+1-y\right)m=0\)
\(\)\(\Leftrightarrow\left\{{}\begin{matrix}-x+2-yx-2y=0\\x+1-y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\-x+2-x\left(x+1\right)-2\left(x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\-x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\\y=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-4\\x=-3\end{matrix}\right.\end{matrix}\right.\)
dó các điểm này không phụ thuộc vào \(m\)
\(\Rightarrow\) \(A\left(0;1\right)\) và \(B\left(-4;-3\right)\) là 2 điểm cố định của đồ thị hàm số .
ai giúp mik vs ạ :
tìm điểm cố định mà đường thẳng y=(m+2).x+(m-3).y-m+8 luôn đi qua với mọi m
Giả sử điểm cố định mà đường thẳng đi qua có tọa độ \(\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:
\(y_0=\left(m+2\right)x_0+\left(m-3\right)y_0-m+8\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+2x_0-4y_0+8=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\2x_0-4y_0+8=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{2}{3}\\y_0=\dfrac{5}{3}\end{matrix}\right.\) \(\Rightarrow\) điểm cố định có tọa độ \(\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)