Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Hiền Nguyễn
Xem chi tiết
Thảo Hiền Nguyễn
Xem chi tiết
Thảo Nguyên Xanh
12 tháng 11 2015 lúc 21:07

1. A=4+42+43+...+450

4A=4(42+43+...+450)

4A=42+43+44+..+450+451

4A-A=42+43+44+...+450+451-4-42-43-..-450

3A=451-4

A=(451-4)/3

2. B=3+32+...+3100

3B=32+33+34+..3100+3101

.........................(làm tương tự A)

2.

C=1.2.3+2.3.4+4.5.6+5.6.7+....+28.29.30

4C=1.2.3.4+2.3.4.4+3.4.5.4+....+4.28.29.30

4C=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+28.29.30.(31-27)

4C=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+28.29.30.31-27.28.29

4C=28.29.30.31

C=28.29.30.31:4

c=188790

Sawada Tsunayoshi
Xem chi tiết
Sawada Tsunayoshi
Xem chi tiết
Sawada Tsunayoshi
Xem chi tiết
Trần Phúc
7 tháng 9 2017 lúc 6:51

Ta có:

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{998.999.1000}\)

\(\Rightarrow\frac{1}{2}A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{998.999.1000}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{998.999}-\frac{1}{999.1000}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{999.1000}=\frac{499499}{999000}\Leftrightarrow A=\frac{499499}{1998000}\)

\(B=\frac{1}{1.2.3.4.5}+\frac{1}{2.3.4.5.6}+\frac{1}{3.4.5.6.7}+\frac{1}{996.997.998.999.1000}\)

\(\Rightarrow\frac{1}{4}B=\frac{4}{1.2.3.4.5}+\frac{4}{2.3.4.5.6}+\frac{4}{3.4.5.6.7}+....+\frac{4}{996.997.998.999.1000}\)

\(\Rightarrow\frac{1}{4}B=\frac{1}{1.2.3.4}-\frac{1}{2.3.4.5}+\frac{1}{2.3.4.5}-\frac{1}{3.4.5.6}+\frac{1}{3.4.5.6}-\frac{1}{4.5.6.7}+...+\frac{1}{996.997.998.999}-\frac{1}{997.998.999.1000}\)

\(\Rightarrow\frac{1}{4}B=\frac{1}{1.2.3.4}-\frac{1}{997.998.999.1000}=\frac{41417124749}{994010994000}\Leftrightarrow B=\frac{41417124749}{3976043976000}\)

Mai Thế Quân
Xem chi tiết
Jungkuck BTS
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:17

ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương

Khách vãng lai đã xóa
Mai Thế Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2021 lúc 20:08

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

Khổng Anh Hoàng
Xem chi tiết