ai chỉ tui cách vẽ 2 đường tròn đồng tâm (O;R) và (O;R\(\dfrac{\sqrt{3}}{2}\)) với
qua A vẽ đường thẳng chỉ có 1 điểm chung với đường tròn tâm O
d là ..... của O
qua A vẽ đường thẳng chỉ có 2 điểm chung với đường tròn tâm O
d là ..... của O
a) d là tiếp tuyến của (O)
b) d là cát tuyến của (O)
Cho đường tròn tâm O và tứ giác ABCD nội tiếp đường tròn tâm O có 2 đường chéo AC và BD vuông góc với nhau. Vẽ đường kính BK của đường tròn tâm O.
a) Chứng minh: tứ giác ACKD là hình thang cân
b)\(AB^2+BC^2+CD^2+DA^2=8R^2\)
(mình chỉ mới hc tới liên hệ giữa dây và khoảng cách từ tâm đến dây th nhé)
Cho 2 đường tròn đồng tâm O. Vẽ tiếp tuyến tại A của đường tròn (O) nhỏ. Tiếp tuyến này cắt đường tròn (O) lớn tại 2 điểm B và C. Chứng minh rằng diện tích của hình vành khuyên tạo bởi 2 đường tròn đồng tâm O bằng diện tích của đường tròn (A;AB)
Gọi bán kính hình tròn lớn r ; bán kính hình tròn nhỏ : r1
Diện tích vành khuyên : S = \(r^2.\pi-r_1^2.\pi=\pi\left(r^2-r_1^2\right)\)
Lại có diện tích hình tròn (A;AB) S1 = AB2.\(\pi\) = (BO2 - AO2).\(\pi=\left(r^2-r_1^2\right).\pi\)
=> S = S1 (đpcm)
Đường trỏn nhỏ bán kính OA, đường tròn lớn bán kính OB
Mặt khác do BC là tiếp tuyến đường tròn nhỏ
\(\Rightarrow OA\perp BC\)
\(\Rightarrow A\) là trung điểm BC
\(\Rightarrow AB^2=OB^2-OA^2\)
Diện tích hình vành khuyên:
\(S_1=S_{\left(O;OB\right)}-S_{\left(O;OA\right)}=\pi OB^2-\pi.OA^2=\pi\left(OB^2-OA^2\right)\)
\(S_{\left(A;AB\right)}=\pi.AB^2=\pi\left(OB^2-OA^2\right)\)
\(\Rightarrow S_1=S_{\left(A;AB\right)}\) (đpcm)
Bằng diện tích của hình tròn (A;AB)
a) Vẽ đường tròn tâm O bán kính R = 2cm.
b) Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O).
c) Vì sao tâm O cách đều các cạnh của lục giác đều ? Gọi khoảng cách này là r.
d) Vẽ đường tròn (O; r).
a)
b) Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)
Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm
(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)
c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)
Cho (O ;R) từ điểm A nằm ngoài (O)vẽ hai tiếp tuyến AB AC và các tiếp tuyến AMN a) Chứng minh AM.AN = AB^2 b) Vẽ đường kính BD chứng minh CD//OA C) cho MN = 8 cm ; R = 5cm . Tính khoảng cách từ O đến dây MN D) BC cắt OA tại H, c/m AH.AD=AM.AN E) c/m tứ giác ABOC nội tiếp đường tròn .Xác định tâm I và bán kính của đường tròn đó Câu a , b, c , d mình làm rồi mình chỉ cần câu e thôi ai biết chỉ mình vs thanks
Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )
\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)
Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)
Xét tứ giác ABOC có :
Góc ABO và góc ACO là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)
=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )
Gọi I là trung điểm của AB
Có tam giác ABO vuông tại B, trung tuyến là BI
=> BI = 1/2.AO=AI=IO (1)
Tam giác ACO vuông tại C, có trung tuyến là CI
=> CI=1/2.AO=AI=IO (2)
Từ (1) và (2) => BI = AI = IO = IC
=> I cách đều 4 đỉnh tứ giác ABOC
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO
Vẽ đường tròn tâm O bán kính R=2cm rồi vẽ hình tám cạnh đều nội tiếp đường tròn (O;2cm) .Nêu cách vẽ
- Vẽ đường tròn (O;2cm)
- Vẽ hai đường kính AB và CD vuông góc với nhau
- Nối AB ,BC ,CD ,DA ta được tứ giác ABCD là hình vuông nội tiếp trong đường tròn (O;2cm)
- Vẽ đường kính EF vuông góc với AD ; đường kính GH vuông góc với CD
-Nối AE, ED, DG, GC, CF, FB, BH, HA ta được đa giác AEDGCFBH là đa giác đều tám cạnh nội tiếp trong đường tròn (O;2cm)
Cho đường tròn tâm (O) và tâm (O') cắt A và B. Qua A vẽ tiếp tuyến Ax với (O) cắt (O') tại E. Qua A vẽ tiếp tuyến Ay với (O') tại D
chứng minh: AB2 = BD.BE
giúp tui với ạ
góc AEB=góc DAB(=1/2*sđ cung AB(O'))
góc ADB=góc BAE(=1/2*sđ cung AB(O))
=>ΔABD đồng dạng với ΔEBA
=>BA/BE=BD/BA
=>BA^2=BE*BD
1.Vẽ đoạn thẳng AB = 6cm, vẽ đường tròn tâm A bán kính 3cm, vẽ đường tròn tâm B bán kính 4cm. Đường tròn (A; 3cm) cắt (B; 4cm) tại C và D. Tính chu vi tam giác ACB và tam giác ADB ?
2.Nêu cách vẽ tam giác MNP biết MN = 5cm; NP = 3cm; PM = 7cm ?
3,Cho 2 đường tròn (O; 4cm) và (O';2cm) sao cho khoảng cách giữa hai tâm O va O' là 5cm. Đường tròn (O; 4cm) cắt đoạn OO' tại điểm A và đường tròn (O'; 2cm) cắt đoạn OO' tại B.
a) Tính O'A,BO,AB ?
b) Chứng minh A là trung điểm của đoạn O'B ?
Vẽ đường tròn tâm O bán kính R = 2cm rồi vẽ hình tám cạnh đều nội tiếp đường tròn (O; 2cm). Nêu cách vẽ ?