1/1 x2 + 1/ 2x 3 + 1/ 3 x4 + .......+ 1 / 56 .57 + 1/ 57 x 58
a) Ta có: \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow-2x+3+x+4=0\)
\(\Leftrightarrow-x+7=0\)
\(\Leftrightarrow-x=-7\)
hay x=7
Vậy: S={7}
b) Ta có: \(\dfrac{2+x}{5}-0.5x=\dfrac{1-2x}{4}+0.25\)
\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{0.5x\cdot20}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{20\cdot0.25}{20}\)
\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Leftrightarrow8+4x-10x=5-10x+5\)
\(\Leftrightarrow-6x+8=-10x+10\)
\(\Leftrightarrow-6x+8+10x-10=0\)
\(\Leftrightarrow4x-2=0\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
d) Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-59}{1}+\dfrac{x-58}{2}+\dfrac{x-57}{3}\)
\(\Leftrightarrow\dfrac{x-1}{59}-1+\dfrac{x-2}{58}-1+\dfrac{x-3}{57}-1=\dfrac{x-59}{1}-1+\dfrac{x-58}{2}-1+\dfrac{x-57}{3}-1\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}=\dfrac{x-60}{1}+\dfrac{x-60}{2}+\dfrac{x-60}{3}\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}\right)-\left(x-60\right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
mà \(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\ne0\)
nên x-60=0
hay x=60
Vậy: S={60}
(x+1/55 + x+2/56 + x+3/57 + x+4/58)-4=0
\(\left(\dfrac{x+1}{55}+\dfrac{x+2}{56}+\dfrac{x+3}{57}+\dfrac{x+4}{58}\right)-4=0\)
<=>\(\dfrac{x+1}{55}+\dfrac{x+2}{56}+\dfrac{x+3}{57}+\dfrac{x+4}{58}=4\)
<=>\(\dfrac{x+1}{55}-1+\dfrac{x+2}{56}-1+\dfrac{x+3}{57}+\dfrac{x+4}{58}-1=4-4\)
<=>\(\dfrac{x+1}{55}-\dfrac{55}{55}+\dfrac{x+2}{56}-\dfrac{56}{56}+\dfrac{x+3}{57}-\dfrac{57}{57}+\dfrac{x+4}{58}-\dfrac{58}{58}=0\)
<=>\(\dfrac{x-54}{55}+\dfrac{x-54}{56}+\dfrac{x-54}{57}+\dfrac{x-54}{58}=0\)
<=>\(\left(x-54\right)\left(\dfrac{1}{55}+\dfrac{1}{56}+\dfrac{1}{57}+\dfrac{1}{58}\right)=0\)
<=>x-54=0
<=>x=54
vậy phương trình có tập nghiệm là S={54}
=>\(\left(\dfrac{x+1}{55}-1\right)+\left(\dfrac{x+2}{56}-1\right)+\left(\dfrac{x+3}{57}-1\right)+\left(\dfrac{x+4}{58}-1\right)=0\)
=>x-54=0
=>x=54
(X+1)/58 + (X+2)/57 = (X+3)/56 + (X+4)/55
Tìm X
(x + 1)/58 + (x + 2)/57 = (x + 3)/56 + (x + 4)/55
(x + 1)/58 + 1 + (x + 2)/57 + 1 = (x + 3)/56 + 1 + (x + 4)/55 + 1
(x + 59)/58 + (x + 59)/57 = (x + 59)/56 + (x + 59)/55
=> (x + 59)/58 + (x + 59)/57 - (x + 59)/56 - (x + 59)/55 = 0
=> (x + 59).(1/58 + 1/57 - 1/56 - 1/55) = 0
Do 1/56 > 1/58; 1/55 > 1/57 => 1/58 + 1/57 - 1/56 - 1/55 khác 0
=> x + 59 = 0
=> x = -59
(x + 1)/58 + (x + 2)/57 = (x + 3)/56 + (x + 4)/55
(x + 1)/58 + 1 + (x + 2)/57 + 1 = (x + 3)/56 + 1 + (x + 4)/55 + 1
(x + 59)/58 + (x + 59)/57 = (x + 59)/56 + (x + 59)/55
=> (x + 59)/58 + (x + 59)/57 - (x + 59)/56 - (x + 59)/55 = 0
=> (x + 59).(1/58 + 1/57 - 1/56 - 1/55) = 0
Do 1/56 > 1/58; 1/55 > 1/57 => 1/58 + 1/57 - 1/56 - 1/55 khác 0
=> x + 59 = 0
=> x = -59
1+2+3+4+5+6+.......+56+57+58
1711
cho xin vài tick nhé các bạn Thanks
Số các số hạng là:
(58 - 1) + 1 = 58 (số)
Tổng là:
(58 + 1) x 58 : 2 = 1711
\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}-\dfrac{x-60}{56}-\dfrac{x-60}{55}-\dfrac{x-60}{54}=0\)
\(\Leftrightarrow x-60=0\)
hay x=60
Tính:
M=60-59+58-57+56-55+........+4-3+2-1
M = 60 - 59 + 58 - 57 + 56 - 55 + ... + 4 - 3 + 2 - 1
M = ( 60 - 59 ) + ( 58 - 57 ) + ( 56 - 55 ) + ... + ( 4 - 3 ) + ( 2 - 1 )
M = 1 + 1 + 1 + ... + 1 + 1
Vì tổng M có 60 số hạng,mà 2 số hạng tạo thành 1 cặp nên 60 số hạng tạo thành 30 cặp
M = 1 . 30
M = 30
Giải phương trình:
\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)
dẽ qua ak nhưng giúp mình làm bài này đi
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)
\(\Rightarrow\left(\frac{x+1}{58}+1\right)+\left(\frac{x+2}{57}+1\right)=\left(\frac{x+3}{56}+1\right)+\left(\frac{x+4}{55}+1\right)\)
\(\Rightarrow\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(\Rightarrow\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(\Rightarrow\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Mà \(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\ne0\)
\(\Rightarrow x+59=0\)
\(\Rightarrow x=-59\)
\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)
\(\Rightarrow\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(\Rightarrow\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Do \(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\ne0\) nên \(x+59=0\Rightarrow x=-59\)
\(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{56}+\frac{x-6}{54}\)Tìm x
Xin lỗi mình làm hơi tắt nha !!!Còn 1 cách nữa ,nếu bạn muốn thì nói với mình nha !!
Ta có : \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\frac{x}{59}+\frac{x}{58}+\frac{x}{57}-\frac{x}{56}-\frac{x}{55}-\frac{x}{54}=\frac{1}{59}+\frac{2}{58}+\frac{3}{57}-\frac{4}{56}-\frac{5}{55}-\frac{6}{54}\)
<=> x = 60
Vậy x = 60
Bạn kiểm tra lại đề nhé. Chỗ
\(.....=\frac{x-4}{56}+\frac{x-5}{56}+\frac{x-6}{54}\)
Tìm x biết:
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
\(\Leftrightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\dfrac{x+1}{58}+1+\dfrac{x+2}{57}+1=\dfrac{x+3}{56}+1+\dfrac{x+4}{55}+1\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}=\dfrac{x+59}{56}+\dfrac{x+59}{55}\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
Mà \(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\ne0\)
\(\Rightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
Vậy: \(S=\left\{-59\right\}\)
Giải
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
⇔\(\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
⇔\(\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
⇔\(\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
⇔\(x+59=0\)
⇔\(x=-59\)