Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Trần Nguyễn Xuân Phát
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Lê Văn Trường
25 tháng 12 2021 lúc 20:18

đúng rùi

Khách vãng lai đã xóa
HEV_NTP
Xem chi tiết
Trần Thị Hoài Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2022 lúc 22:16

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

Mai Thanh Tân
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 13:37

Sửa đề: \(7^{52}+7^{51}-7^{50}\)

\(=7^{50}\left(7^2+7-1\right)=7^{50}\cdot55⋮55\)

VICTORY_Trần Chí Thành
Xem chi tiết
kiều văn bình
31 tháng 3 2016 lúc 20:39

7755có tận cùng là 3

336có tận cùng là 9

nên 336+775-2 có tận cùng là 3+9-2=...0 chia hết cho 5

Trần Thị Thu Hường
Xem chi tiết
Edogawa Conan
15 tháng 8 2017 lúc 8:37

a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.

Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)

\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)

b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)

\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)

\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)

ZetNo1
15 tháng 8 2017 lúc 8:39

câu a sai đề, bạn thử bấm máy xem chia hết ko

câu b

16^5 chia 33 dư 1

2^15 chia 33 dư 32

vậy 16^5 + 2^15 chia hết cho 33

Hoàng Giang
9 tháng 2 2018 lúc 21:04

kết bạn nhé

nguyen phi hung
Xem chi tiết
Trần Võ Vân Anh
Xem chi tiết
Hà Nguyễn Bảo Hân
Xem chi tiết
 βєsէ Ňαkɾσtɦ
20 tháng 6 2017 lúc 9:36

sai đề à cậu  76 + 75 - 74 

ta có ; 76 + 75 - 74

= 74(72 + 7 - 1) 

= 74.55 chia hết cho 55

Dũng Lê Trí
20 tháng 6 2017 lúc 9:36

Sửa đề : \(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\left(49+6\right)\)

\(=7^4\cdot55\)

7^4 x 55 chia hết cho 55 (đpcm)

ZzZ Thiên Hương ZzZ
20 tháng 6 2017 lúc 9:37

bn viết sai đề rùi thì phải , đề đúng phải là thế này :

Chứng minh rằng :

A=76+75-74 chia hết cho 55 

                                 bài làm :

     A= 76+75-74

      A=74.(72+7-1)

     A=74.(49+7-1)

     A= 74 . 55 chia hết cho 55

         => dpcm