Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2017 lúc 2:25

Để hai đường thẳng d1;  d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1;  d2; d3 đồng quy.

Giao điểm của d1 và d3 là nghiệm hệ phương trình:

x − 2 y ​ + 1 = 0 x + ​ y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ;    2 )

Do 3 đường thẳng này đồng quy  nên điểm A thuộc d2. Suy ra:

3m -  (3m-2).2 + 2m – 2= 0

⇔ 3m – 6m + 4 + 2m – 2 =  0  ⇔  - m  + 2 = 0  ⇔  m= 2

Với m= 2 thì đường thẳng d2 :  2x -  4y  + 2= 0 hay  x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.

Vậy không có giá trị nào của m thỏa mãn.

ĐÁP ÁN D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 9 2019 lúc 2:06

Chọn B.

Phương pháp: Tham số hóa điểm M và N

Do đó:

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2019 lúc 17:07

Big City Boy
Xem chi tiết
Đỗ Minh Hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2019 lúc 11:57

Do các đường thẳng đôi một cắt nhau tại các điểm A, B, C nên các điểm cách đều các cạnh gồm tâm đường tròn nội tiếp và ba tâm đường tròn bàng tiếp.

Vậy có tất cả 4 điểm  M cách đều ba đường thẳng đã cho.

đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2019 lúc 3:14

Đáp án D

Gọi I là giao điểm của hai đường thẳng d1; d2 . Tọa độ điểm I là nghiệm của hệ:

Lấy điểm  m 1 ; 0 ∈ d 1  . Đường thẳng qua M và vuông góc với d2 có phương trình: 3x + y-3= 0

Gọi  H = ∆ ∩ d 2  suy ra tọa độ điểm H là nghiệm của hệ:

Phương trình đường thẳng

có dạng:

hay x-3y + 3= 0

Ngọc Minh
Xem chi tiết
Trần Công Thanh Tài
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 23:08

Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}x+2y-1=0\\x-3y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{3}{5};\dfrac{4}{5}\right)\)

Chọn \(N\left(1;0\right)\) là 1 điểm thuộc \(d_1\)

Gọi \(d_3\) là đường thẳng qua N và vuông góc \(d_2\Rightarrow d_3\) nhận (3;1) là 1 vtpt

Phương trình \(d_3\):

\(3\left(x-1\right)+1\left(y-0\right)=0\Leftrightarrow3x+y-3=0\)

Gọi P là giao điểm \(d_2;d_3\Rightarrow\) tọa độ P là nghiệm:

\(\left\{{}\begin{matrix}3x+y-3=0\\x-3y+3=0\\\end{matrix}\right.\) \(\Rightarrow P\left(\dfrac{3}{5};\dfrac{6}{5}\right)\)

Gọi Q là điểm đối xứng N qua \(d_2\Rightarrow P\) là trung điểm NQ

\(\Rightarrow\left\{{}\begin{matrix}x_Q=2x_P-x_N=\dfrac{1}{5}\\y_Q=2y_P-y_N=\dfrac{12}{5}\end{matrix}\right.\) \(\Rightarrow Q\left(\dfrac{1}{5};\dfrac{12}{5}\right)\)

\(\Rightarrow MQ\) đối xứng \(MN\) qua \(d_2\Rightarrow MQ\) là đường thẳng d cần tìm 

\(\overrightarrow{MQ}=\left(\dfrac{4}{5};\dfrac{8}{5}\right)=\dfrac{4}{5}\left(1;2\right)\) \(\Rightarrow\) đường thẳng d nhận (2;-1) là 1 vtpt

Phương trình d:

\(2\left(x-\dfrac{1}{5}\right)-1\left(y-\dfrac{12}{5}\right)=0\Leftrightarrow2x-y+2=0\)