Cho tam giác ABC trọng tâm G CMR: vecto MG = 1/3( vecto MA + vecto MB + vecto MC) với M bất kì
giúp mình với các thần đồng !!
Cho G là trọng tâm tam giác ABC. CM:
a) vecto GA + vecto GB + vecto GC= vecto 0
b) vecto MA + vecto MB + vecto MC= 3 vecto MG ( với mọi M)
a: Gọi M là trung điểm của AB
Xét ΔABC có
G là trọng tâm
M là trung điểm của AB
Do đó: CG=2/3CM
=>CG=2GM
=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)
\(=2\overrightarrow{GM}+\overrightarrow{GC}\)
\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)
b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)
\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3\cdot\overrightarrow{MG}\)
Cho tam giác ABC
a. chứng minh G là trọng tâm tam giác khi vecto GA+ vec to GB + vesto GC= vecto 0
b, với 1 điểm M bất kì ta có vecto MA+ vecto MB+ vecto MC=3 vecto MG
a) Gọi I là trung điểm BC
Lấy D đối xứng với G qua I => I là trung điểm GD
=> Tứ giác BGCD là hình bình hành
\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\\ \Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GD}\\\Rightarrow \overrightarrow{GA}+\overrightarrow{GD}=0\\ \Rightarrow G\text{ là trung điểm }AD\\ \Rightarrow GI=\frac{1}{2}GD=\frac{1}{2}AG\\ \Rightarrow AG=2GI\\ \Rightarrow\frac{1}{2}AG+AG=AG+GI\\ \Rightarrow\frac{3}{2}AG=AI\\ \Rightarrow AG=\frac{2}{3}AI\)
=> G là trọng tâm \(\Delta ABC\)
\(\text{b) }\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\\ =3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\\ =3\overrightarrow{MG}+0=3\overrightarrow{MG}\)
cho hbh ABCD tâm O và điểm M bất kì . CM : vecto MA +vecto MB + vecto MC+ vecto MD= 4 vecto MO
mk cần gấp các b giúp mk vs
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)
\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OD}\right)=4\overrightarrow{MO}\)
(Do \(\overrightarrow{OA}=-\overrightarrow{OC};\overrightarrow{OB}=-\overrightarrow{OD}\))
Cho tam giác ABC . Tìm tập hợp điểm M thỏa mãn :
a) |vecto MA+ vecto MC | = |vecto MA- vecto MB|
b) |2 vecto MA + vecto MB | = |4 vecto MB - vecto MC |
c) |4 vecto MA - vecto MB + vecto MC |=|2 vecto MA - vecto MB - vecto MC |
Cảm ơn trc , ai đó có thể giúp mình nhanh được không ạ , tại mình đang cần gấp :)))
MA+MC= MA-MB
<=> 2 MI=BA
=> MI=BA/2
=> I thuộc đường tròn I bán kính AB/2
nãy mk quên giải thik:
a, gọi I la trung điểm của AC=> MA+MC=2MI
hok tốt
b, 2MA+MB=4MB-MC
gọi I: 2OA+IB=0
gọi J: 4JB-JC=0
có:
3MI=3MJ
MI=MJ
=> M thuộc đường trung trục của IJ
Cho tam giác ABC Gọi M là trung điểm của AB có G là trọng tâm,I là trung điểm của AB ,M thuộc AB sao cho vtMA+3vtMB=vt0.
a) Phân tích vecto MG theo hai vecto MC và MB.
Cho tam giác ABC.
a. Xác định điểm M thoả mãn đẳng thức vectơ: 2 vecto MA - vecto MB + vecto MC = vecto 0
b. Chứng minh rằng: 2 vecto OA - vecto OB + vecto OC = 2 vecto OM với điểm O bất kỳ
cho tam giác abc tìm m s cho | vecto ma+ vecto mb|= |vecto ma + vecto mc|
Cho tam giác ABC Xác định vị trí điểm M sao cho vecto MA - vecto MB + vecto MC = vecto 0
Ta thấy \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}=\overrightarrow{CM}\)
Như vậy, điểm M chính là đỉnh thứ tư của hình bình hành ABCM.