Cho A= 1-32+34-36+...+376-378. Chứng minh rằng 1-10A là một số chính phương
a) Không tính kết quả hãy so sánh : A=2019.2021 và B=20202
b) Cho biết A+4B ⋮ 13,(a,bϵN).Chứng minh rằng 10A+B ⋮ 13
c) Tìm số tự nhiên n,sao cho 5n+1⋮7
d) Cho C=3+32+33+34+...+3100 chứng tỏ C ⋮ 40
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
1, Chứng minh rằng 1:3 - 2:3^2 + 3:3^3 - 4:3^4 + ...+ 99:3^99 - 100:3^100 < 3:16
2, Cho A= 1x3x5x7x...x2001 . Chứng minh rằng trong các số 2A , 2A+1 , 2A-1 không có số nào là số chính phương
3, Cho a>0 thoả mãn ax ( a+1 ) x ( a+2 ) x ... x ( a+2015 ) = 2015 . Chứng minh rằng a<1: 2014!
4, Tìm 10a+b sao cho ( a^2 + b^2 ) : ( 10a + b ) có giá trị lớn nhất
5, Tìm x,y thuộc Z thoả mãn 4x2 + 4x + y2 = 24
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Bài 2:
Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)
=(a+b)2+(a-b)2 là tổng 2 số chính phương
⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
Bài 1. Chứng minh rằng tổng của 4 số chính phương liên tiếp không thể là một số chính phương.
Bài 2. Chứng minh rằng tổng của 5 số chính phương liên tiếp không thể là một số chính phương.
Bài 3. Cho bốn chữ số 0,2,3,4. Tìm số chính phương có 4 chữ số được tạo bởi cả 4 chữ số trên.
Bài 4. Tìm số nguyên tố p thỏa mãn
a) p 2 + 62 cũng là số nguyên tố.
b) p 2 + 14 và p 2 + 6 cũng là số nguyên tố.
✿Bài 1: Tìm a,b\(\inℕ^∗\), biết:
a) a.b + b.19 = 713 b) a.b - 10.b = 650
Bài 2:
a) Viết tổng sau thành một tích: 34 + 35 + 36 + 37
b) Chứng minh rằng B = 1 + 3 + 32 + ... + 399 chia hết cho 40
✿
Bài 1 :
a) \(a.b+b.19=713\) \(\left(a;b\inℕ^∗\right)\)
\(\Rightarrow b.\left(a+19\right)=713\)
\(\Rightarrow\left(a+19\right);b\in\left\{1;23;31;713\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(-18;713\right);\left(4;31\right);\left(12;23\right);\left(694;1\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(4;31\right);\left(12;23\right);\left(694;1\right)\right\}\left(a;b\inℕ^∗\right)\)
b) \(a.b-10.b=650\)
\(\Rightarrow b.\left(a-10\right)=650\)
\(\Rightarrow\left(a-10\right);b\in\left\{1;5;10;13;25;26;50;65;130;325;650\right\}\)
Bạn lập bảng sẽ tìm ra (a;b)...
Bài 2 :
a) \(3^4+3^5+3^6+3^7=3^4\left(1+3+3^2+3^3\right)=3^4.40\)
b) \(B=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow B=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)...+3^{96}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow B=40+3^4.40...+3^{96}.40\)
\(\Rightarrow B=40\left(1+3^4...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương