Những câu hỏi liên quan
Một Mình Vẫn Ổn
Xem chi tiết
Ya Ya
Xem chi tiết
Minh Hiếu
17 tháng 12 2023 lúc 22:58

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)

Bình luận (0)
Phạm Băng Nhi
Xem chi tiết
linh nguyễn
Xem chi tiết
nhan
Xem chi tiết
Lê Tâm
Xem chi tiết
Akai Haruma
22 tháng 10 2020 lúc 16:15

Lời giải:

a)

$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$

$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$

$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$

$=\overrightarrow{AB}+\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$

Tương tự:

$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$

$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$

Cộng lại:

$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$

Ta có đpcm.

b)

$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Ya Ya
Xem chi tiết
Minh Hiếu
17 tháng 12 2023 lúc 22:44

Ta có:

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)

          \(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)

          \(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)

          \(=6\overrightarrow{MI}\)

\(\Rightarrow M,I,N\) thẳng hàng

Bình luận (0)
Toản
Xem chi tiết
Akai Haruma
28 tháng 2 2022 lúc 0:35

Lời giải:
a. $I$ là trung điểm $AH$, $J$ là trung điểm $HC$ nên $IJ$ là đường trung bình ứng với cạnh $AC$ của tam giác $HAC$

$\Rightarrow IJ\parallel AC$ hay $IJ\perp AB$

Tam giác $BAJ$ có $AI\perp BJ, JI\perp AB$ nên $I$ là trực tâm tam giác 

$\Rightarrow BI\perp AJ$

b. Gọi $T,K$ lần lượt là trung điểm $AB, AC$

\((\overrightarrow{MA}+\overrightarrow{MB})(\overrightarrow{MA}+\overrightarrow{MC})=(\overrightarrow{MT}+\overrightarrow{TA}+\overrightarrow{MT}+\overrightarrow{TB})(\overrightarrow{MK}+\overrightarrow{KA}+\overrightarrow{MK}+\overrightarrow{KC})\)

\(=2\overrightarrow{MT}.2\overrightarrow{MK}=0\Leftrightarrow \overrightarrow{MK}\perp \overrightarrow{MT}\)

Vậy $M$ nằm trên đường tròn đường kính $KT$

Bình luận (0)
Akai Haruma
28 tháng 2 2022 lúc 0:36

Hình vẽ:

Bình luận (0)
Ngọc Vy
Xem chi tiết
Phạm Minh Quang
6 tháng 10 2020 lúc 21:05

a) Ta có: \(\overrightarrow{BM}+\overrightarrow{CN}+\overrightarrow{AP}=\frac{\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{AB}}{2}=\frac{\overrightarrow{BB}}{2}=\overrightarrow{0}\)

b) Ta có: \(\overrightarrow{AP}+\overrightarrow{AN}-\overrightarrow{AC}+\overrightarrow{BM}=\overrightarrow{AP}+\overrightarrow{CN}+\overrightarrow{BM}=\overrightarrow{0}\)(theo câu a)

c) Ta có: \(\overrightarrow{OA}-\overrightarrow{OP}=\overrightarrow{PA}\); \(\overrightarrow{OB}-\overrightarrow{OM}=\overrightarrow{MB}\);\(\overrightarrow{OC}-\overrightarrow{ON}=\overrightarrow{NC}\)

Cộng vế theo vế ta được \(\left(\overrightarrow{OA}-\overrightarrow{OP}\right)+\left(\overrightarrow{OB}-\overrightarrow{OM}\right)+\left(\overrightarrow{OC}-\overrightarrow{ON}\right)=\overrightarrow{PA}+\overrightarrow{MB}+\overrightarrow{NC}=\frac{\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{BB}}{2}=\overrightarrow{0}\)

Chuyển vế suy ra điều phải chứng minh

mấy bài trên rất cơ bản chỉ cần dùng quy tắc ba điểm và quy tắc hiệu là có thể giải một cách dễ dàng

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Minh Quang
6 tháng 10 2020 lúc 20:49

A B C M N P

Bình luận (0)
 Khách vãng lai đã xóa