Chương I: VÉC TƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Tâm

Cho tam giác ABC có D, E, F là trung điểm của BC CA AB chứng minh rằng

a, vectơ AD + vectơ BE + vectơ CF = vectơ 0

b với mọi m vectơ MA+ vectơ MB + vectơ MC = vectơ MD + vectơ ME + vectơ MF

Akai Haruma
22 tháng 10 2020 lúc 16:15

Lời giải:

a)

$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$

$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$

$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$

$=\overrightarrow{AB}+\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$

Tương tự:

$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$

$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$

Cộng lại:

$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$

Ta có đpcm.

b)

$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$

Ta có đpcm.

Khách vãng lai đã xóa

Các câu hỏi tương tự
linh nguyễn
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Dạ Lạc
Xem chi tiết
Linh nguyen
Xem chi tiết
Phạm Băng Nhi
Xem chi tiết
Adorable Angel
Xem chi tiết
Họ Không
Xem chi tiết
Chery Phương
Xem chi tiết
Hien Pham
Xem chi tiết