Tham khảo:
Cộng đồng học sinh Việt Nam - HOCMAI Forum
Tham khảo:
Cộng đồng học sinh Việt Nam - HOCMAI Forum
Cho tam giác ABC có D, E, F là trung điểm của BC CA AB chứng minh rằng
a, vectơ AD + vectơ BE + vectơ CF = vectơ 0
b với mọi m vectơ MA+ vectơ MB + vectơ MC = vectơ MD + vectơ ME + vectơ MF
Cho tứ giác ABCD.Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA và M là 1 điểm tùy ý.Chứng minh:
a,\(\overrightarrow{AF}+\overrightarrow{BG}+\overrightarrow{CH}+\overrightarrow{DE}=\overrightarrow{0}\)
b,\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{ME}+\overrightarrow{MF}+\overrightarrow{MG}+\overrightarrow{MH}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AK}\) (K là trung điểm FH)
Cho tứ giác ABCD . Tìm số k và điểm I cố định sao cho các tổng vectơ sau có thể viết dưới dạng \(\overrightarrow{k.MI}\) ∀ M
a, \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=k\overrightarrow{MI}\)
b. \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=k\overrightarrow{MI}\)
c, \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=k\overrightarrow{MI}\)
d, \(2\overrightarrow{MA}-3\overrightarrow{MC}+2\overrightarrow{MD}=k\overrightarrow{MI}\)
Cho tam giác ABC có G là trọng tâm. Gọi M thuộc BC sao cho vectơ BM bằng 2 lần vectơ MC. Chứng minh rằng vectơ AB + 2 lần vectơ AC = 3 lần vectơ AM. Chứng minh rằng vectơ MA+ vectơ MB + vectơ MC = 3 lần vectơ MG
giải hộ mik bài này với
Cho △ABC . Hãy xác định điểm M sao cho :
a) vec tơ MA - vec tơ MB + vec tơ MC = vec tơ 0 b) vec tơ MB - vec tơ MC + vec tơ BC = vec tơ 0
c) vec tơ MB - vec tơ MC + vec tơ MA = vec tơ 0 d) vec tơ MA - vec tơ MB - vec tơ MC = vec tơ 0
e) vec tơ MC + vec tơ MA - vec tơ MB + vec tơ BC = vec tơ 0
Cho tứ giác ABCD. Tìm điểm Mạnh sao cho:
1) vt MA + 2vt MB - vt MC + 2vt MD = vt không
2) vt MA + 2vt MB - 5vt MC + 2vt MD = vt không
3) vt MA + vt MB + 2vt MC + 4vt MD = vt không
1/ cho lục giác đều ABCDEF tâm O, M là điểm tùy ý. CM:
a)Các vecto CA+OB+OC+CD+CE+CF= vecto 0
b) Các vecto MA+MC+ME= MB+MD+MF
2/ cho hình bình hành ABCD gọi I là trung điểm AB, CM
CM: a) các veco AB+CD+BC+DA= vecto 0
b) các vecto ID+IC=AD+BC
Cho tam giác ABC và 2 điểm D và E
1/ Xá định điểm M thỏa mãn và dựng hình:
a) →MA+→MB+→MD=→MD - →ME b) →2MA+→3MB -→MC=→0
2/ Xác định điểm N thỏa mãn và dựng hình:
a) →2NA - →3NB+→4NC=→0 b) →NA+→NB+→NC+3(→ND+→NE) = →0
3/ Gọi P là điểm xác định bởi →5PA-→7PB-→PI=→0 và G là trọng tâm của tam giác ABC.
a) Chứng minh: →GP = →2AB b) Với AP giao BG tại Q. Hãy tính tỉ số \(\frac{QA}{QP}\)