Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Việt Dũng
Xem chi tiết
Akai Haruma
15 tháng 12 2022 lúc 20:03

Lời giải:

a. Biểu thức $B$ không có GTLN bạn nhé. Chỉ có GTNN thôi.

b. 

$C=(3-3^2+3^3-3^4)+(3^5-3^6+3^7-3^8)+....+(3^{21}-3^{22}+3^{23}-3^{24})$

$=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+....+3^{20}(3-3^2+3^3-3^4)$

$=(3-3^2+3^3-3^4)(1+3^4+...+3^{20})=-60(1+3^4+...+3^{20})\vdots 60(*)$

Mặt khác:

$C=(3-3^2+3^3)-(3^4-3^5+3^6)+.....-(3^{22}-3^{23}+3^{24})$

$=3(1-3+3^2)-3^4(1-3+3^2)+...-3^{22}(1-3+3^2)$

$=(1-3+3^2)(3-3^4+...-3^{22})=7(3-3^4+...-3^{22})\vdots 7(**)$

Từ $(*); (**)$ mà $(7,60)=1$ nên $C\vdots (7.60)$ hay $C\vdots 420$

Nguyễn Đức Việt Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2023 lúc 11:02

a: Sửa đề: Tìm GTNN

B=|x-2022|+|x-1|>=|x-2022+1-x|=2021

Dấu = xảy ra khi 1<=x<=2022

b: C=(3-3^2+3^3)-3^3(3-3^2+3^3)+...-3^21(3-3^2+3^3)

=21(1-3^3+3^6-...-3^21) chia hết cho 21

C=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+...+3^20(3-3^2+3^3-3^4)

=-60(1+3^4+...+3^20) chia hết cho 60

=>A chia hết cho BCNN(21;60)=420

Nguyễn Đức Việt Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2023 lúc 11:10

loading...

subjects
Xem chi tiết
Dương Thị Hồng Vân
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 16:19

Lời giải:

$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$

$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$

$=(4+4^2)(1+4^2+...+4^{22})$

$=20(1+4^2+...+4^{22})\vdots 20$ 

----------------------------

$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$

$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$

$=(1+4+4^2)(4+4^4+...+4^{22})$

$=21(4+4^4+....+4^{22})\vdots 21$

----------------------

Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$

fidlend
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Đỗ Minh Hằng
Xem chi tiết
nguyễn thành trung
Xem chi tiết
Nguyễn Quốc Khánh
6 tháng 12 2015 lúc 22:17

Ta có

H=4+4^2+...+4^24

H=(4+4^2) + (4^3+4^4)+...+(4^23+4^24)

<=>H=20+4^2.20+...+4^22.20

<=>h=20(1+4^2+...+4^22) chia hết cho 20

 

Ta có

H=4 +4^2+...+4^24

<=>H=(4+4^2+4^3) +(4^4+4^5+4^6)+....+(4^22+4^23+4^24)

<=>H=4.21+4^4.21+....+4^22 .21

<=>H=21(4+4^4+...+4^22) chia hết cho 21

 

 

H=4+4^2+...+4^2

<=>h=(4+4^2+4^3+4^4+4^5+4^6)+....+(4^19+4^20+4^21+4^22+4^23+4^24)

=5420 + ...+4^18.5420

=13.420 +....+13.420.4^18

chia hết cho 420

nhớ tick mình nha,cảm ơn nhiều

 

Lê Danh Phong
30 tháng 12 2022 lúc 21:18

Ta có:

A = 4 + 42 + 43 +......+ 423+ 424 

= (4 + 42)) + (43 +44)......+ (423+ 424)

=(4 + 42).1+(4 + 42).42+...+(4 + 42).422

=20.(1+42+...+422) chia hết cho 20

Ta lại có:

 A = 4 + 42 + 43 +......+ 423+ 424

=(4 + 42 + 43)+...+(422+423+424)

=(4 + 42 + 43).1+...+(4 + 42 + 43​).421

=21.(1+...+421) chia hết cho 21

Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420

Vậy...

shi nit chi
Xem chi tiết
Nguyễn Kiên
30 tháng 10 2016 lúc 11:06

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21