Cho x,y thỏa mãn x+y=1
Tính giá trị biểu thức x^3+y^3+3xy
Cho x,y là 2 số khác nhau thỏa mãn x^2+y=y^2+x. Tính giá trị biểu thức A=x^3+y^3+3xy(x^2+y^2)+6x^2y^2(x+y)
Ta có: x2+y=y2+x
=>x2+y-y2+x=0
=>(x2-y2)-(x-y)=0
=>(x-y)(x+y)-(x-y)=0
=>(x-y)(x+y-1)=0
=>x-y=0 hoặc x+y-1=0
=>x+y=1(TH1 loại do x khác y)
ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)
=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2
=>A=x2-xy+y2+3x3y+3xy3+6x2y2
=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)
=>A=1-3xy+3x2y+3xy2
=>A=1+3xy(-1+a+b)
=>A=1+3xy(-1+1)
=>A=1+3xy.0
=>A=1
Vậy A=1 khi x2+y=y2+x và x khác y.
Lê Đức Huy chép sai đề cau đầu kìa!
Cho x,y thoả mãn x+y=1. tính giá trị biểu thức x^3+y^3+3xy
x3+y3=x3+3x2y+3xy2+y2+3xy-3x2y-3xy2
=(x+y)3+3xy.(1-x-y)
=(x+y)3+3xy.[1-(x+y)]
=13+3xy.(1-1)
=1
13 - 3xy . (1-1) = 1
>_< chúc bn học tốt
Cho x,y là các số dương thỏa mãn x + y \(\le\)3. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{2}{3xy}+\sqrt[]{\dfrac{3}{y+1}}\)
Cho x,y thõa mãn x+y=1.Tính giá trị biểu thức P=x3+3xy+y3
\(P=x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1^3=1\)
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
Cho x,y thỏa mãn: \(x+y=\sqrt{6-\sqrt{35}}\)
Tính giá trị biểu thức:
\(P=x^3+y^3+3xy\)
Cho x,y thỏa mãn \(x+y=\sqrt{6-\sqrt{35}}\)
Tính giá trị biểu thức:
\(P=x^3+y^3+3xy\)
cho x;y thỏa mãn x+y=1. tính giá trị của x^3+3xy+y^3
Từ x+y=1 (GT)
=>(x+y)3=13=1
=>x3+3x2y+3xy2+y3=1 (HĐT)
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy*1=1
=>x3+y3+3xy=1
Cho x+y=1 .tính giá trị biểu thức x3 + y3 +3xy và x-y=1 .Tính giá trị biểu thức x3 - y3-3xy
13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))
1 = \(x^3\)+y3+3\(xy\)
13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)