Bài 1: Tìm x,y là số tự nhiên, biết:
a) \(\frac{x-1}{7}=\frac{1}{y}\) b) \(\frac{5}{x}-\frac{2y}{3}=\frac{1}{3}\)
^_^
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Bài 1: Tìm x, y thuộc N
a. ( x +1 ).( y +3 ) =6
b.1+2+3+.....+x = 55
Bài 2: Tìm các số tự nhiên x sao cho các số có dạng sau đều là số tự nhiên
a.\(\frac{5}{x-1}\)
b.\(\frac{7}{x+1}\)
c.\(\frac{2x+5}{x+1}\)
Bài 6 : Một phép chia có số chia và số thương là số tự nhiên, biết số bị chia là 77, số dư là 7. Tìm số chia và thương của phép chia đó
bài 6 ta có số chia 10 thì thương là 7
số chia là 7 thì thương là 10
số chia là 2 thì thương là 35
số chia là 35 thì thương là 2
số chia là 5 thì thương là 14
số chia là 14 thì thương là 5
Bài 1
1.Tìm các số tự nhiên x;y thỏa mãn:\(x^2\)+\(3^y\)=3026
2.Tìm các số nguyên dương x;y thỏa mãn:\(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}=\frac{1}{2}\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
câu a làm cách khác đi bạn
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)
bài 1 tìm x,y,z
a,\(\frac{x}{10}\)=\(\frac{y}{15}\),x=\(\frac{7}{2}\)và x+2y-3z=20
b,2x=3y,49=57 và 4x-3y+5z=7
c,\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{47}{5}\)và x+y+z=49
2 tìm x trong các tỉ lệ thức sau
a, \(\frac{x-3}{x+5}=\frac{5}{7}\)
b,\(\frac{7}{x-1}\)\(=\frac{x+1}{9}\)
c \(\frac{x+4}{20}=\frac{5}{x+4}\)
d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 3: tìm các số x,y,z
a,\(\frac{x}{y}=\frac{7}{10}=\frac{z}{9}\)
b,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
bài 4 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b ,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và -x+y+z=-120
bài 5 tìm x,y,z biết
và xyz=20
bài 6 tìm x,y,z biết
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2 + y2 -z2 =585
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x , y biết :
a ) \(\frac{x+1}{3}=\frac{2y-1}{5}=\frac{x+2}{7}\)
b ) \(\frac{x-1}{2+1}=\frac{3}{y-2}=\frac{3}{2}\)
a) Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{2y-1}{5}=\frac{x+2}{7}=\frac{\left(x+2\right)-\left(x+1\right)}{7-3}=\frac{1}{4}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{4}\\y=\frac{9}{8}\end{cases}\)
b) Ta có : \(\begin{cases}\frac{x-1}{2+1}=\frac{3}{2}\\\frac{3}{y-2}=\frac{3}{2}\end{cases}\)\(\Rightarrow\begin{cases}\frac{11}{2}\\y=4\end{cases}\)
Tìm x, y lá số tự nhiên khác 0, biết
a) \(\frac{1}{x}-\frac{2}{y}=\frac{1}{4}\)
b)\(\frac{x}{2}+\frac{3}{y}=\frac{4}{7}\)
Bài 1
a,So sánh hai số sau \(4^{127}\)và \(81^{43}\)
b, Tìm số nguyên x thỏa mãn \(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{x.\left(x+1\right):2}=\frac{2015}{336}\)
Bài 2
Cho phân số \(A=\frac{6n+1}{4n+3}\)(với b nguyên)
a Tìm giá trị n nguyên âm để A có giá trị là số nguyên
b, Tìm giá trị n để A là phân số không rút gọn được
Bài 3
a,Tìm các cặp giá trị x,y nguyên thỏa mãn \(\frac{x}{8}-\frac{2}{2y+3}=\frac{7}{12}\)
b, Cho phép toán * thỏa mãn với hai số tự nhiên a và b ta có a*b= 3a+\(b^a\)Tìm các số nguyên tố x,y sao cho 2*x+y*4-8 cũng là số nguyên tố
Tìm x biết:
a) \(x:1\frac{2}{7} = - 3,5\)
b) \(0,4.x - \frac{1}{5}.x = \frac{3}{4}\)
a) \(1\frac{2}{7} = 1 + \frac{2}{7} = \frac{9}{2}\)
\(\begin{array}{l}x:1\frac{2}{7} = - 3,5\\x:\frac{9}{7} = - \frac{7}{2}\\x = - \frac{7}{2}.\frac{9}{7}\\x = - \frac{9}{2}\end{array}\)
b) \(0,4.x - \frac{1}{5}.x = \frac{3}{4}\)
\(\begin{array}{l}\frac{2}{5}.x - \frac{1}{5}.x = \frac{3}{4}\\\left( {\frac{2}{5} - \frac{1}{5}} \right).x = \frac{3}{4}\\\frac{1}{5}.x = \frac{3}{4}\\x = \frac{3}{4}:\frac{1}{5}\\x = \frac{3}{4}.5\\x = \frac{{15}}{4}\end{array}\)