Tìm x :
\(\dfrac{x+721}{2020}\) + \(\dfrac{x+21}{700}\) + \(\dfrac{x+721}{2021}\) = -1
TÌM X
X+721/2020+X+21/700+X+721/2021
GIÚP MÌNH VỚI
Kết quả phép tính trên đâu mà bảo mình hộ bạn
`Answer:`
\(\frac{x+721}{2020}+\frac{x+21}{700}+\frac{x+721}{2021}=-1\) (Mình bổ sung đề nhé.)
\(\Leftrightarrow\frac{x+721}{2020}+[\frac{x+21}{700}+1]+\frac{x+721}{2021}=0\)
\(\Leftrightarrow\frac{x+721}{2020}+\frac{x+721}{700}+\frac{x+721}{2021}=0\)
\(\Leftrightarrow\left(x+721\right).\left(\frac{1}{2020}+\frac{1}{700}+\frac{1}{2021}\right)=0\)
Mà \(\frac{1}{2020}+\frac{1}{700}+\frac{1}{2021}\ne0\)
\(\Rightarrow x+721=0\Leftrightarrow x=-721\)
x+721/2020 + x+21/700 + x+721/2021
Giải giùm mình bài này nhaaa
\(\dfrac{1}{2019-x}+\dfrac{1}{2020-x}+\dfrac{1}{2021-x}=\dfrac{13}{12}\)
Tìm x nha
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Tìm x bt:
\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}\)
tìm x:
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
Lưu ý: có cả cách giải:>
refer
https://lazi.vn/edu/exercise/634984/tim-x-biet-x-1-2019-x-2-2020-x-3-2021x-4-2022
Tìm x, biết:
( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2023}\) ) . x = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) + \(\dfrac{2020}{3}\)
+ ... + \(\dfrac{1}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
*Thực hiện
1/ (\(\dfrac{2021}{2020}\)+\(\dfrac{2020}{2021}\)) x (\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\))
2/ (\(\dfrac{7}{19}\)-\(\dfrac{5}{12}\)):\(\dfrac{-5}{8}\)-(\(\dfrac{7}{19}\)-\(\dfrac{29}{12}\)):\(\dfrac{5}{8}\)
3/ \(\dfrac{-5}{6}\)x\(\dfrac{7}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{14}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{3}{24}\)
1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)
=\(0\)
mink chịu bài này nó rất khó
Giải phương trình
\(\dfrac{1-\sqrt{x-2019}}{x-2019}+\dfrac{1-\sqrt{y-2020}}{y-2020}+\dfrac{1-\sqrt{z-2021}}{z-2021}+\dfrac{3}{4}=0\)
ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)
Đặt \(\sqrt{x-2019}=a,......\)
Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)
- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)
\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)
- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )
Vậy ...