Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TrịnhAnhKiệt
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 1:19

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

nguyễn thị nam
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 22:09

\(a^2+b^2=a^3+b^3=a^4+b^4\)

\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)

\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)

\(\Rightarrow2ab=a^2+b^2\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^2+b^2=a^3+b^3\)

\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)

\(\Rightarrow a+b=2\)

Shimakaze Kai
Xem chi tiết
ĐÔ ĐÔ
Xem chi tiết
doremon
20 tháng 4 2016 lúc 21:15

khá là khó

Nguyễn Vân Chi
16 tháng 6 2017 lúc 12:48

Bài này lớp 6 mà bạn

Đặt c1=a1-b1, ... , c5=a5-b5.

Có c1+ c+ ...+ c5

= (a1-b1)+(a2-b2)+...+(a5-b5)

= (a1+a2+...+a5)-(b1+b2+...+b5)

=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)

=> Trong 5 số c1,...,ccó một số chẵn vì từ c1 đến c5 có 5 số

=> Trong các số a1-b1,...,a2-bcó một số chẵn

Vậy ... (đpcm)

Bà Tân VLOG
13 tháng 1 2021 lúc 20:38

lớp 6 con mịe mày

Khách vãng lai đã xóa
nguyen tien hai
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết

a: \(a^2+4a=b^2+4b+1\)

=>\(a^2+4a-b^2-4b=0\)

=>(a-b)(a+b)+4(a-b)=0

=>(a-b)(a+b+4)=0

mà a-b<>0

nên a+b+4=0

=>a+b=-4

b: Đặt \(X=a^3+b^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(-4\right)^3-3ab\cdot\left(-4\right)=-64+12ab\)

\(a^2+4a=1\)

=>\(a^2+4a-1=0\)

=>\(a^2+4a+4-5=0\)

=>\(\left(a+2\right)^2=5\)

=>\(\left[\begin{array}{l}a+2=\sqrt5\\ a+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}a=\sqrt5-2\\ a=-\sqrt5-2\end{array}\right.\)


\(b^2+4b=1\)

=>\(b^2+4b-1=0\)

=>\(b^2+4b+4-5=0\)

=>\(\left(b+2\right)^2=5\)

=>\(\left[\begin{array}{l}b+2=\sqrt5\\ b+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}b=\sqrt5-2\\ b=-\sqrt5-2\end{array}\right.\)

Vì a<>b nên sẽ có hai trường hợp sau:

TH1: \(a=\sqrt5-2;b=-\sqrt5-2\)

=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)

X=-64+12ab

=-64-12

=-76

TH2: \(a=-\sqrt5-2;b=\sqrt5-2\)

=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)

X=-64+12ab

=-64-12

=-76

Vậy: X=-76

c: Đặt \(Y=a^4+b^4\)

\(=\left(a^2+b^2\right)^2-2a^2b^2\)

\(=\left\lbrack\left(a+b\right)^2-2ab\right\rbrack^2-2\cdot\left(ab\right)^2\)

\(=\left\lbrack\left(-4\right)^2-2\cdot\left(-1\right)\right\rbrack^2-2\cdot\left(-1\right)^2=\left\lbrack16+2\right\rbrack^2-2\)

\(=18^2-2\)

=324-2

=322

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2017 lúc 16:24

Đáp án đúng : B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2019 lúc 16:50

Lê Thị Quỳnh Anh
Xem chi tiết